NOTE

This manual documents the Model 752A and its assemblies at the revision levels shown in Appendix 7A. If your instrument contains assemblies with different revision letters, it will be necessary for you to either update or backdate this manual. Refer to the supplemental change/errata sheet for newer assemblies, or to the backdating sheet in Appendix 7A for older assemblies.

752A ReferenceDivider

LIMITED WARRANTY \& LIMITATION OF LIABILITY

Each Fluke product is warranted to be free from defects in material and workmanship under normal use and service. The warranty period is one year and begins on the date of shipment. Parts, product repairs and services are warranted for 90 days. This warranty extends only to the original buyer or end-user customer of a Fluke authorized reseller, and does not apply to fuses, disposable batteries or to any product which, in Fluke's opinion, has been misused, altered, neglected or damaged by accident or abnormal conditions of operation or handling. Fluke warrants that software will operate substantially in accordance with its functional specifications for 90 days and that it has been properly recorded on non-defective media. Fluke does not warrant that software will be error free or operate without interruption.

Fluke authorized resellers shall extend this warranty on new and unused products to end-user customers only but have no authority to extend a greater or different warranty on behalf of Fluke. Warranty support is available if product is purchased through a Fluke authorized sales outlet or Buyer has paid the applicable international price. Fluke reserves the right to invoice Buyer for importation costs of repair/replacement parts when product purchased in one country is submitted for repair in another country.

Fluke's warranty obligation is limited, at Fluke's option, to refund of the purchase price, free of charge repair, or replacement of a defective product which is returned to a Fluke authorized service center within the warranty period.

To obtain warranty service, contact your nearest Fluke authorized service center or send the product, with a description of the difficulty, postage and insurance prepaid (FOB Destination), to the nearest Fluke authorized service center. Fluke assumes no risk for damage in transit. Following warranty repair, the product will be returned to Buyer, transportation prepaid (FOB Destination). If Fluke determines that the failure was caused by misuse, alteration, accident or abnormal condition of operation or handling, Fluke will provide an estimate of repair costs and obtain authorization before commencing the work. Following repair, the product will be returned to the Buyer transportation prepaid and the Buyer will be billed for the repair and return transportation charges (FOB Shipping Point).

THIS WARRANTY IS BUYER'S SOLE AND EXCLUSIVE REMEDY AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FLUKE SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES OR LOSSES, INCLUDING LOSS OF DATA, WHETHER ARISING FROM BREACH OF WARRANTY OR BASED ON CONTRACT, TORT, RELIANCE OR ANY OTHER THEORY.

Since some countries or states do not allow limitation of the term of an implied warranty, or exclusion or limitation of incidental or consequential damages, the limitations and exclusions of this warranty may not apply to every buyer. If any provision of this Warranty is held invalid or unenforceable by a court of competent jurisdiction, such holding will not affect the validity or enforceability of any other provision.

Fluke Corporation
P.O. Box 9090

Everett WA
98206-9090

Fluke Europe B.V.
P.O. Box 1186

5602 B.D. Eindhoven
The Netherlands

Table of Contents

1 INTRODUCTION AND SPECIFICATIONS 1-1
1-1. INTRODUCTION 1-1
1-7. SPECIFICATIONS AND ACCESSORIES 1-1
2 OPERATION 2-1
2-1. INTRODUCTION 2-1
2-3. SHIPPING INFORMATION 2-1
2-5. INSTALLATION 2-1
2-7. INPUT LINE POWER 2-1
2-9. FRONT AND REAR PANEL FEATURES 2-1
2-11. OPERATING NOTES 2-1
2-12. Introduction 2-1
2-14. Guard/Ground Terminals 2-1
2-17. Self-Calibration Procedure 2-1
2-19. OPERATION 2-4
2-20. Introduction 2-4
2-22. Calibration System Operation 2-4
2-24. Stand Alone Operation 2-4
3 THEORY OF OPERATION 3-1
3-1 INTRODUCTION 3-1
3-3. OVERALL FUNCTIONAL DESCRIPTION 3-1
3-6. System Operation 3-1
3-8. Stand-Alone Operation 3-2
3-10. VOLTAGE DIVIDER CIRCUIT 3-2
3-14. MODE SWITCH 3-2
3-16. SELF-CALIBRATION CIRCUIT 3-2
3-23. GUARD CIRCUITS 3-4
3-26. ERROR ANALYSIS 3-4

TABLE OF CONTENTS, continued

SECTION

TITLE
PAGE
4 MAINTENANCE 4-1
4-1. INTRODUCTION 4-1
4-5. SERVICE INFORMATION 4-1
4-9. GENERAL MAINTENANCE 4-2
4-10. Introduction 4-2
4-12. Cleaning $4-2$
4-16. Internal Repair 4-2
4-18. Access Procedure 4-2
4-30. PERFORMANCE CHECKS 4-7
4-32. INTERNAL CALIBRATION (Long-Term Drift Corr.) 4-7
4-34. Self-Calibration Bridge Long-Term Drift Correction Procedure 4-7
4-36. Self-Calibration Bridge Long-Term Drift Correction Example 4-7
4-39. 10:1 Divider Long-Term Drift Correction Procedure 4-8
4-41. 10:1 Divider Drift Correction Example 4-9
4-44. 100:1 Divider Long-Term Drift Correction Procedure 4-10
4-46. TROUBLESHOOTING 4-11
5 LIST OF REPLACEABLE PARTS 5-1
5-1. INTRODUCTION 5-1
5-4. HOW TO OBTAIN PARTS 5-2
6 ACCESSORIES 6-1
INTRODUCTION 6-1
6-3. DUAL MOUNTING FASTENERS (M00-800-5237) 6-1
6-5. HALF-WIDTH RACK MOUNT KIT (M07-203-601) 6-1
6-7. FULL-WIDTH RACK MOUNT KIT (M07-200-603) 6-1
7 GENERAL INFORMATION 7-1
7A MANUAL BACKDATING INFORMATION 7A-1
8 SCHEMATIC DIAGRAMS 8-1
INDEX 8-12

List of Tables

TABLE TITLE PAGE
1-1. Accessories 1-1
1-2. 752A Specifications 1-2
2-1. 752A Front Panel Controls and Connectors 2-2
2-2. Equipment Required for Self-Calibration 2-3
4-1. Test Equipment Required 4-1
4-2. Self-Calibration Bridge Drift Correction Network 4-8
4-3. 10:1 Divider Drift Correction Network 4-10
4-4. 100:1 Divider Drift Correction Network 4-11
4-5. Front Panel Resistance Measurements 4-12

List of Illustrations

FIGURE TITLE PAGE
Frontispiece Modei 752A Reference Divider $v i$
1-1. Model 752A External Dimensions 1-5
2-1. Front Panel Controls and Connectors 2-2
2-2. Self-Calibration Setup 2-4
2-3. Mode Switch Configurations Block Diagram 2-5
2-4. Calibration System Operation 2-6
2-5. Stand Alone Operation 2-6
3-1. 752A Block Diagram 3-1
3-2. System Operation Block Diagram 3-2
3-3. Stand-Alone Operation 3-3
3-4. \quad 10:1 Voltage Divider 3-3
3-5. 100:1 Voltage Divider 3-3
3-6. Calibrate Mode Switching 3-4
3-7. 10:1 Divider and Calibration Circuit 3-5
3-8. \quad 100:1 Divider and Calibration Circuit 3-5
3-9. 100:1 Divider Driven Guard 3-6
3-10. Simplified Schematic of the 10:1 Calibration Circuit 3-7
4-1. Cover Screw Locations 4-3
4-2. Printed Circuit Board Jumper Access 4-4
4-3. PCB Access 4-5
4-4. Resistor Module Access 4-6

Section 1
 Introduction and Specifications

1-1. INTRODUCTION

1-2. The John Fluke Model 752A is a self-calibrating, precision dc voltage divider with two ranges of division: $10: 1$ and $100: 1$. In addition to the two divider ranges, the 752A incorporates switching modes used in the cardinal point calibration of dc voltage calibrators. The points provided on the 752 A are $0.1 \mathrm{~V}, 1 \mathrm{~V}, 10 \mathrm{~V}, 100 \mathrm{~V}$, and 1000 V . When the 752 A is combined with a dc voltage calibrator, a 10 V reference standard, and a null detector, the 752A switches the equipment to standardize the dc voltage calibrator without having to physically change the leads.

1-3. The 752A is self-calibrated before each use. This procedure requires a stable source and a null detector. The 752A is a ratio device only, and does not have to be included in a calibration cycle that is traceable to an external standard.

1-4. The front panel MODE switch selects between selfcalibration and normal operation. In the Self-Calibration mode, the voltage divider resistors are compared using an external null detector to an internal, self-calibrating bridge to precisely set their overall value, and hence, the division ration of the 752A. The three push-to-turn CALIBRATE controls adjust the $10: 1$ divider, $100: 1$ divider, and the self-calibration bridge. The CALIBRATE switch selects the divider to be calibrated and interchanges the two resistors in the self-calibration bridge to check that they are of equal value. If not, the BALANCE control adjusts one of these resistors by a small amount to make both selfcalibration bridge resistors equal in value.

1-5. In normal operation, the MODE switch settings correspond to the cardinal calibration points of a dc
voltage calibration system. The MODE switch now interconnects the external equipment in one of three ways (refer to Figure 2-3):

1. The voltage divider of the 752 A is connected between the reference standard and the null detector as shown in Figures 2-3a and 2-3b.
2. The voltage divider is out of the circuit and the reference standard is compared directly with the UUT (unit under test) as shown in Figure 2-3c.
3. The voltage divider is connected between the UUT and the null detector as shown in Figures 2-3d and 2-3e.

1-6. The OUTPUT terminals are always connected to the output of the Voltage Divider. The OUTPUT terminals are used when the 752A is used as a stand-alone voltage divider.

1-7. SPECIFICATIONS AND ACCESSORIES

1-8. The accessories available for the 752A are listed in Table 1-1 and described in more detail in Section 6 of this manual. The specifications for the 752 A are listed in Table 1-2.

Table 1-1. Accessories

MODEL NUMBER	DESCRIPTION
M00-800-523	Dual Mounting Fastener
M07-203-603	Half Width Rack Mount Kit
M07-200-601	Full Width Rack Mount Kit
$5440 A-7002$	Low Thermal EMF Cable Assembly

Table 1-2. 752A Specifications

RATIO RANGES 10:1, 100:1 RATIO ACCURACY* \qquad $18^{\circ} \mathrm{C}$ to $28^{\circ} \mathrm{C}$		
Range	Input Voltage	Accuracy Of Output
$\begin{gathered} 10: 1 \\ 100: 1 \end{gathered}$	$\begin{gathered} 100 \mathrm{~V} \\ 1000 \mathrm{~V} \end{gathered}$	0.2 ppm 0.5 ppm
MAXIMUM INPUT VOLTAGE 10:1 Ratio \qquad 200 V maximum** 100:1 Ratio \qquad 1100 V maximum		
POWER COEFFICIENT EFFECT ON RATIO*** 10:1 Ratio \qquad <0.05 ppm of input @ 100V 100:1 Ratio \qquad <0.3 ppm of input @ 1000V		
$\begin{aligned} & \text { DIMENSIONS (HxWxD) } 19.1 \mathrm{~cm} \times 22.1 \mathrm{~cm} \times 60.3 \mathrm{~cm} \\ &(7.5 \mathrm{in} \times 8.5 \mathrm{in} \times 23.7 \mathrm{in}) \text { (See Figure 1-1) } \end{aligned}$		
WEIGHT $8.4 \mathrm{~kg} \mathrm{(18} \mathrm{lbs} 8 \mathrm{Oz}$)		
STANDARDS \qquad ANSI C39.5 Draft \#8 IEC 348 2nd edition, 1978 CSA Bulletin 556B, 17 Sept. 1973 VDE 0411-1973 UL 1244		
OPERATING TEMPERATURE $\ldots \ldots0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$		
ALTITUDE Non-operating . 0-12,200 meters (40,000 feet) Operating \qquad 0-3,050 meters (10,000 feet)		
TEMPERATURE AND HUMIDITY		
Condition	Temperature (${ }^{\circ} \mathrm{C}$)	\% Relative Humidity (Non-condensing)
Non-operating Operating	$\begin{gathered} -40 \text { to }+75 \\ 0 \text { to } 50 \\ 0 \text { to } 30 \\ 30 \text { to } 40 \\ 40 \text { to } 50 \end{gathered}$	Not Controlled $95 \pm 5 \%$ $80 \pm 5 \%$ $75 \pm 5 \%$ $45 \pm 5 \%$

Table 1-2. 752A Specifications (cont)

VIBRATION Per MIL 28800C Class 5
*Ratio accuracy specification applies for eight (8) hours following self-calibration, provided that the instrument is operated at a constant temperature equal to the calibration temperature $\pm 1^{\circ} \mathrm{C}$ and provided that the instrument was allowed to stabilize for a period of not less than four (4) hours prior to self-calibration in a thermally stable environment.
**This specification applies to the safety of the 752A only. The maximum voltage for best accuracy is 100 V .
***This is included in the 100:1 Ratio Accuracy specification.

Figure 1-1. Model 752A External Dimensions

static awareness

Some semiconductors and custom IC's can be damaged by electrostatic discharge during handling. This notice explains how you can minimize the chances of destroying such devices by:

1. Knowing that there is a problem.
2. Leaning the guidelines for handling them.
3. Using the procedures, packaging, and bench techniques that are recommended.

The following practices should be followed to minimize damage to S.S. (static sensitive) devices.

1. MINIMIZE HANDLING

2. DISCHARGE PERSONAL STATIC BEFORE HANDLING DEVICES. USE A HIGH RESISTANCE GROUNDING WRIST STRAP.

3. HANDLE S.S. DEVICES BY THE BODY.

4. USE STATIC SHIELDING CONTAINERS FOR HANDLING AND TRANSPORT.

5. DO NOT SLIDE S.S. DEVICES OVER ANY SURFACE.

6. AVOID PLASTIC,VINYL AND STYROFOAM ${ }^{\circledR}$ IN WORK AREA.

[^0]
8. WHEN REMOVING PLUG-IN ASSEMBLIES HANDLE ONLY BY NON-CONDUCTIVE EDGES AND NEVER TOUCH OPEN EDGE CONNECTOR EXCEPT AT STATIC-FREE WORK STATION. PLACING SHORTING STRIPS ON EDGE CONNECTOR HELPS PROTECT INSTALLED S.S. DEVICES.

9. HANDLE S.S. DEVICES ONLY AT A STATIC-FREE WORK STATION.
10. ONLY ANTI-STATIC TYPE SOLDERSUCKERS SHOULD BE USED.
11. ONLY GROUNDED-TIP SOLDERING IRONS SHOULD BE USED.

Section 2 Operation

2-1. INTRODUCTION

2-2. The information in this section describes the installation and operation of the Model 752A. It is recommended that the contents of this section be read and understood before any attempt is made to operate the instrument. Should any difficulties arise during operation, contact your nearest John Fluke Sales Representative, or the factory. Our mailing address is: John Fluke Mfg. Co., Inc.; P.O. Box C9090; Everett, WA 98206 (206) 347-6100.

2-3. SHIPPING INFORMATION

2-4. The 752A is shipped in a foam-packed container. Upon receipt of the instrument, a thorough inspection should be made to reveal any possible shipping damage. Special instructions for inspection and claims are included on the shipping carton. If reshipment of the instrument is necessary, the original container or equivalent should be used.

2-5. INSTALLATION

2-6. The 752A may be operated free standing or rack mounted. A rack mount accessory for the 752 A is described in Section 6.

2-7. INPUT LINE POWER

2-8. The 752A is a passive device requiring no external line power.

2-9. FRONT AND REAR PANEL FEATURES

2-10. The front panel features are shown in Figure 2-1. The various controls and connections are listed and explained in Table 2-1. The only connection on the rear panel is a chassis ground connection.

2-11. OPERATING NOTES

2-12. Introduction
2-13. This section describes the use of the guard and
ground terminals on the 752A. The Self-Calibration Procedure for the 752 A is described at the end of the Operating Notes.

2-14. Guard/Ground Terminals

2-15. Ordinarily, the GUARD and GROUND terminals are strapped together. They may be unstrapped when it is desirable to reference the internal guard circuit to a different potential than ground.

WARNING

LETHAL VOLTAGES MAY BE PRESENT
WHEN OPERATING THE 752A WITH THE
GUARD AND CHASSIS GROUND CON-
NECTIONS SEPARATED.

CAUTION

A MAXIMLM POTENTIAL DIFFERNECE OF 60V RMS MAY APPEAR BETWEEN THE GUARD AND CHASSIS GROUND TERMINALS. IF THIS LIMITATION IS EXCEEDED, DAMAGE TO THE INSTRUMENT MAY RESULT.

2-16. Separating the GUARD and GROUND terminals may be necessary to minimize the effect of circulating currents in the ground system of a calibration setup. The GUARD terminals may also be referenced to a different potential than GROUND to minimize the effects of electrical leakage on the characteristics of the 752A's voltage divider.

Figure 2-1. Front Panel Controls and Connectors

Table 2-1. 752A Front Panel Controls and Connectors

ITEM NO.	FEATURE NAME	DESCRIPTION
1	10:1 calibration potentiometer	Calibrates 10:1 divider.
2	BALANCE calibration potentiometer	Calibrates internal calibration bridge.
3	$100: 1$ calibration potentiometer	Calibrates 100:1 divider.
4	CALIBRATE switch	Selects normal operation or divider to be calibrated.
5	MODE switch	Selects divider ratio or Cal mode.
6	GUARD terminal	Guard circuit connection.
7	GROUND terminal	Chassis ground connection.
8	OUTPUT terminals	Voltage Divider output.
9	REFERENCE STANDARD terminals	Input from reference standard voltage source.
10	NULL DETECTOR terminals	Output to null detector.
11	INPUT terminals	Instrument input.

Table 2-2. Equipment Required For Self-Calibration

NAME	REQUIRED SPECIFICATION:	TYPE		
Voltage Source	$20 \mathrm{~V}, 10 \mathrm{~mA}$ Null Detector	$1 \mu \mathrm{~V}$ full scale sensitivity $10 \mathrm{M} \Omega$ input resistance		Fluke 5440 A
:---				
NOTE		Fluke 845 Null Detector		
:---				
The leakage resistance to the case of the Null Detector should be greater than $10 \times 10^{12} \Omega$. Use the same null				
detector for both self-calibration and operation.				

2-17. Self-Calibration Procedure

2-18. Complete the following procedure to selfcalibrate the 752 A . The test equipment required is shown in Table 2-2. Equivalent test equipment may be substituted providing it meets the minimum specification given in Table 2-2. Connect the equipment as shown in Figure 2-2.

CAUTION

> TO INSURE OPERATION WITHIN THE SPECIFICATIONS LISTED IN SECTION 1, DO NOT ADJUST THE 10:1 OR 100:1 CALIBRATE CONTROLS AT ANY TIME OTHER THAN AS A PART OF THE SELFCALIBRATION PROCEDURE. THESE CONTROLS ARE PART OF THE DIVIDER CIRCUIT REGARDLESS OF THE POSITION OF THE MODE SWITCH.

CAUTION

TO AVOID CRACKING THE PLASTIC BINDING POST INSULATOR, TIGHTEN ONLY WITH FINGER PRESSURE. DO NOT USE TOOLS.

1. Allow the 752 A to thermally stabilize for at least 4 hours in a thermally stable environment ($\pm 1^{\circ} \mathrm{C}$).
2. Adjust the Voltage Source for 20 V output. Leave the output de-energized at this time.
3. Connect the 752A as shown in Figure 2-2.
4. Set the MODE switch to the 752 CAL position.
5. Set the CALIBRATE switch to the $10: 1+$ position.
6. Energize the Voltage source.
7. Set the Null Detector to the most sensitive range that allows an onscale reading.
8. Note the reading on the Null Detector.
9. Set the CALIRATE switch to the 10:1position.
10. Note the Null Detector reading. If there is a difference between the reading in the ' + ' and ' - ' switch positions, adjust the BALANCE potentiometer such that the Null Detector readings are the same in both the ' + ' and ' - ' switch positions.
11. If the Null Detector reading after step 10 is not zero, adjust the 10:1 potentiometer for a null on the Null Detector.
12. Repeat steps 7-11 until the Null Detector has a null reading equal to $0 \pm 0.5 \mu \mathrm{~V}$. If it is not possible to achieve equal Null Detector readings, or if the Null Detector reading exceeds the stated limits, perform the Long Term Drift correction proced .ie on the self-calibrate bridge as described in Section 4 of this manual.
13. Set the Null Detector to the 1 mV range.
14. Set the CALIBRATE switch on the 752A to the $100: 1+$ position.
15. Set the Null Detector to the most sensitive scale allowing an onscale reading.
16. Note the reading on the Null Detector.
17. If the Null Detector reading after step 16 is not zero, adjust the 100:1 potentiometer so that the Null Detector indicates a null reading of $0 \pm 1 \mu \mathrm{~V}$.
18. Repeat steps 13-18 until the Null Detector has a null reading equal to $0 \pm 1 \mathrm{uV}$.

Figure 2-2. Self-Calibration Setup
19. Set the CALIBRATE switch to the 100:1position and verify the null. If the difference between the $100: 1+$ and $100: 1$ - switch settings is greater than $0.5 \mu \mathrm{~V}$, repeat the self-calibration procedure beginning with step 5.
20. If the Null Detector reading exceeds the 0 ± 1 uV limits, perform the Long Term Drift Correction procedure described in Section 4 of this manual. Note the value of the Null Detector reading before proceeding to the Drift Correction procedure.
21. Set the Null Detector to the 10 V range.
22. De-energize the Voltage Source.
23. Set the 752A CALIBRATE switch to the OPERATE position.
24. Set the 752A MODE switch to the desired position.
25. The 752 A is now ready for use.

2-19. OPERATION

2-20. Introduction

2-21. The following paragraphs descibe operation of the 752A in a dc voltage calibration system and as a standalong divider. Figure 2-3 shows the various test configurations possible using the internal switching of the 752A. Perform the Self-Calibration Procedure described earlier in this section before using the 752A.

NOTE

To insure performance to the specifications listed in section 1, the 752 A must be calibrated and operated in an environment whose temperature change is less than $\pm I^{\circ} \mathrm{C}$ from the time of self-calibration to use.

NOTE
To minimize noise effects the null detector terminals are reversed in the 0.1 V and the 1 V configurations; i.e., an input which is low will cause a positive null detector reading.

2-22. Calibration System Operation

2-23. When the 752 A is used as part of a calibration system (Figure 2-4), the Unit Under Test (UUT) is connected to the INPUT terminals, the Null Detector to the NULL DETECTOR terminals, and the Reference Standard to the REFERENCE STANDARD terminals. After self-calibration, set the CALIBRATE switch to OPERATE. The MODE switch then determines the interconnection of the precision divider portion of the 752A, Null Detector, UUT and Reference Standard.

2-24. Stand-Alone Operation

$2-25$. If the 752 A is to be used for stand-along operation, the input should be connected to the INPUT terminals and the output should come form the OUTPUT terminals. After self-calibration, set the 752A MODE switch to either the $10: 1$ or $100: 1$ positions. Set the CALIBRATE switch to OPERATE. Figure $2-5$ shows the 752 A used in a typical stand-alone configuration.
a) 0.1 V

b) 1 V

c) 10 V

d) 100 V

e) 1000 V

Figure 2-4. Calibration System Operation

NOTE: Set 752A mode switch to "100V, 100:1" position

Figure 2-5. Stand-Alone Operation

Section 3 Theory of Operation

3-1. INTRODUCTION

3-2. The information in this section describes the theory of operaton for the 752A. The discussion is supported by a block diagram and simplified schematics in this section and the detailed schematics found in Section 8.

3-3. OVERALL FUNCTIONAL DESCRIPTION

3-4. Refer to Figure 3-1. The 752A is a precision, selfcalibrating, $10: 1$ and $100: 1$ voltage divider. The 752A has three modes of operation: part of a calibration system, stand-alone $10: 1$ or $100: 1$ voltage divider, and SelfCalibration. Dual guard circuits (one driven, one passive) minimize the effects of leakage on the performance of the instrument.

3-5. The effects of short-and long-term drift on the resistors in the 752A is compensated in two ways. Shortterm drift is minimized by the Self-Calibration procedure. Long-term drift is corrected by internal strapping on the internal printed circuit assembly. Both dividers and calibration resistors have individual drift compensation networks. The Drift Correction procedure is described in Section 4.

3-6. System Operation

3-7. In this mode, the 752A is used with an external dc reference standard and null detector for the cardinal point calibration of dc voltage calibrators. As shown in Figure $3-2$, the MODE switch determines connections to and

Figure 3-1. 752A Block Diagram

Figure 3-2. System Operation Block Diagram
from the $100: 1$ and $10: 1$ dividers, the UUT, dc reference standard, and null detector. This simplifies test procedures by eliminating lead switching for various equipment configurations.

3-8. Stand-Alone Operation

3-9. The 752A may also be used as a stand-alone 10:1 and 100:1 self-calibrating, precision voltage divider (Figure 3-3). The MODE switch connects the INPUT terminals to the $100: 1$ or $10: 1$ divider input. The divider output is available at the OUTPUT terminals.

3-10. VOLTAGE DIVIDER CIRCUIT

3-11. The 752A design is based on the concept of a resistive voltage divider. In Figure 3-4, 9R is the input or series resistor, and R is the output or shunt resistor.

3-12. The output resistor is $40 \mathrm{k} \Omega$. The input resistor is 9 times the output resistor, or $360 \mathrm{k} \Omega$. (Figure 3-4). In the 752 A , the input resistor is a group of three resistors, each with a nominal value of 3 R , or $120 \mathrm{k} \Omega$. The input resistance of the $10: 1$ divider is $400 \mathrm{k} \Omega$.

3-13. In the $100: 1$ divider, the input resistor is 99 R or $3.96 \mathrm{M} \Omega$ and the output resistor is $40 \mathrm{k} \Omega$ (Figure 3-5). The input resistance is $2 \mathrm{M} \Omega$ ohms rather than $4 \mathrm{M} \Omega$ ohms due to the driven guard circuit.

3-14. MODE SWITCH

3-15. The MODE switch determines the various internal and external connections for the precision divider, external reference standard, null detector, and the UUT in self-calibrate and operate modes. This is shown in Figure 2-3.

3-16. SELF-CALIBRATION CIRCUIT

3-17. The self-calibration circuit used in the 752A uses a technique based on the Wheatstone bridge to accurately and precisely set the ratios of the internal divider resistors. The switching necessary to perform self-calibration is supplied by the MODE switch.

3-18. The input resistor of each of the two voltage dividers is divided into three groups of values 3 R or 30 R . As shown in Figure 3-6, the CALIBRATE switch
connects the resistors in each group in series (OPERATE mode) or in parallel (CALIBRATE mode). In the CALIBRATE mode, the input resistors have a value of R or 10 R allowing their values to be compared using a resistance bridge and an external null detector.

3-19. The Calibration Bridge is composed of two resistors of nominally equal value ($120 \mathrm{k} \Omega$). The polarity reversing positions of the CALIBRATE switch allow
these two resistors to be electrically interchanged in their positions in the calibration bridge. Any value difference between the two calibration bridge resistors s:ows up on a null detector as a difference in the read:- 5 when the polarity switch is changed form ' + ' to'-'.

3-20. The BALANCE control allows the user to zero the difference between the calibration bridge resistor values. Note that the degree of balance between the calibrate and

Figure 3-3. Stand-Alone Operation

Figure 3-4. 10:1 Voltage Divider
unknown sides of the bridge does not degrade the ability to accurately match the two resistors in the calibration bridge in value.

3-21. The calibrate side of this bridge is adjusted such that both resistors are equal in value as described above. The bridge is then balanced by adjusting one of the 3R resistors in the $10: 1$ divider input resistor group for a null (Figure 3-7). The three parallel connected resistors are now equal to the output resistor. When the calibration switches are opened as shown in Figure 3-6, the resistance between the INPUT HI and OUTPUT HI terminals is exactly nine times the resistance between the OUTPUT HI and LO terminals.

3-22. The $100: 1$ Self-Calibration procedure is an extension of the $10: 1$ procedure. The calibration bridge is now used to compare the value of the entire $10: 1$ divider, previously calibrated, and the parallel configuration of the three 30 R resistors in the $100: 1$ divider to the two equal value resistors of the calibration bridge (Figure 38). When the null detector indicates a null, the parallel resistor string is equal in value to the previously calibrated 10:1 divider.

NOTE

The 10:1 and 100:1 calibration controls are part of the $10: 1$ and 100:1 divider circuits regardless of the position of the MODE switch. Adjustment of either of these controls after self-calibration will result in out of specification performance.

Figure 3-6. Calibrate Mode Switching (10:1)

3-23. GUARD CIRCUITS

3-24. The effects of leakage resistance can cause significant error in a 0.2 ppm precision divider. The 752A uses a driven guard circuit to reduce these effects on the resistor groups used in the $100: 1$ divider circuit (Figure 3-9). In addition, a passive guard circuit surrounds the entire resistor and switch network. Connection to the passive guard is made via the front panel GUARD terminal.

3-25. The driven guard operates from the input voltage applied to the $100: 1$ divider. The three groups of resistors comprising the 100:1 divider input resistor are enclosed in separate metal enclosures. The driven guard minimizes the effects of leakage by elevating the enclosure around a resistor group to a voltage equal to one-half of the voltage drop across that resistor group. This minimizes leakage effects by minimizing the potential difference between the resistor group and the nearest conductor.

3-26. ERROR ANALYSIS

3-27. The 752A functions as a very accurate voltage divider. Since it is not calibrated to an external traceable standard, a discussion of the sources of error is pertinent to the theory of operation. There are several major sources of error in the 752A. Fortunately, each of these sources has been addressed and controlled to within the necessary specifications. These sources are:

1. Switch contact resistance for switch contacts in series with the divider string.
2. Switch contact resistance for switch contacts involved in the series to parallel switching for self calibration.
3. Resistor mismatching errors
4. Errors in the Null Detector readings during self calibration.
5. Errors due to Temperature Coefficient of the resistors.
6. Leakage resistance in the materials used to fabricate the instrument (particularly the switches).

3-28. The error associated with switch contacts in series with the divider resistors shows up in the upper leg of the divider. The contact resistance adds to the resistance of the upper leg and its effect is shown in equation 3-1.

Vo/ $\mathrm{Vi}=[1 /\{N+(\Delta \mathrm{R} / \mathrm{R})\}]$

$$
\text { where: } \begin{align*}
\mathrm{N}= & \text { ratio (e.g. } 10: 1 \tag{3-1}\\
& \text { ratio, } N=10) \\
\mathrm{R}= & \text { output resistance } \\
\Delta \mathrm{R}= & \text { switch contact } \\
& \text { resistance }
\end{align*}
$$

3-29. The worst case occurs in the $10: 1$ divider where the output resistance is 40 K ohms and the ratio is $10: 1$. In this

Figure 3-7. 10:1 Divider and Calibration Circult

Figure 3-8. 100:1 Divider and Calibration Circuit

Figure 3-9. 100:1 Divider Driven Guard
case the error causes the output voltage to be lower than it should be by an amount ΔV_{0}, where $\Delta V_{0}=$ Ideal output voltage - Actual output voltage. The designed value for this switch resistance is less than 10 milliohms. Thus for the actual instrument the error associated with the series switch resistance is -0.025 ppm .

3-30. The output error associated with RS1 and RS2 swisch contacts switching between the series configuration and the parallel configuration is somewhat more difficult to calculate (refer to Figure 3-10). The design of the instrument is such that most of the effects of this error are reduced by adjusting the interconnection resistances. Thus the worst case error due to these switch contacts is 0.042 ppm for the $10: 1$ and 0.044 ppm for the 100:1.

3-31. The error associated with resistor mismatches is negligible due to the close matching performed in the factory

3-32. The error due to the Null Detector readings depends upon the type and accuracy of the Null Detector used. The Null Detector used in design testing had an uncertainty of 0.2 uV . This error translates into an adjustment error of 0.04 ppm for both $10: 1$ and $100: 1$ ranges.

3-33. Errors in the divider ratio due to the temperature coefficient of the resistors has been limited to less than 0.05 ppm on the $10: 1$ ratio and to less than 0.3 ppm on the 100:1 ratio through the use of the Fluke Dynamic Resistor Matching technique.

3-34. Leakage resistance is the last source of error and perhaps the most important. The components most susceptible to these errors are the switches. For this reason, the switches have been cleaned and handled with care to reduce any surface contamination during production. Non Activated solder flux has been used to reduce the possibility of introducing ionic surface contaminants to the switch. A properly handled switch with proper solder connections will ensure that the ratio error due to leakage is less than 0.057 ppm on the $10: 1$ range and less than 0.38 ppm on the $100: 1$ range.

3-35. Using statistical summing techniques, the net errors are:

10:1 - Error less than 0.2 ppm
100:1 - Error less than 0.5 ppm
3-36. According to the values for each of the error sources, the net errors are within the specifications for the instrument.

Figure 3-10. Simplified Schematic of 10:1 Calibration Circuit

Section 4 Maintenance

Abstract

WARNING THESE SERVICING INSTRUCTIONS ARE FOR USE BY QUALIFIED PERSONNEL ONLY. TO AVOID ELECTRICAL SHOCK, DO NOT PERFORM ANY SERVICING OTHER THAN THAT CONTAINED IN THE OPERATING INSTRUCTIONS UNLESS YOU ARE QUALIFIED TO DO SO.

4-1. INTRODUCTION

4-2. The following paragraphs describe the calibration cycle requirements, manintenance procedures, performance checks, internal calibration, and troubleshooting for the 752A.

4-3. The 752A is self-calibrating, so it does not need to be included in a calibration cycle traceable to an external standard. An in-house calibration cycle is optional as the Self-Calibration Procedure will detect out-ofspecification performance. The Internal Calibration Procedure provides a means of compensating for the long-term drift of the internal divider and calibration bridge resistors that cannot be compensated for in the Self-Calibration Procedure.

4-4. Self-Calibration and the resistance measurements described in the following section are recommended as an acceptance test when the instrument is first received. The
equipment required for performance verification and calibration is shown in Table 4-1. Equivalent test equipment may be substituted providing it meets the minimum specification given in Table 4-1.

4-5. SERVICE INFORMATION

4-6. The 752A is warranted for a period of one (1) year upon delivery to the original purchaser. The WARRANTY is given on the back of the title page located in the front of this manual.

4-7. Factory authorized calibration and service for each Fluke product is available at various worldwide locations. A list of these service centers is located in Section 7 of this manual. Shipping information is given in Section 2 of this manual. If requested, an estimate will be provided to the customer before any repair work is begun on instruments that are beyond the warranty period.

Table 4-1. Test Equipment Required

TYPE	REQUIRED SPECIFICATIONS	RECOMMENDED MODEL
Null Detector	$1 \mu \mathrm{~V}$ full-scale sensitivity $10 \mathrm{M} \Omega$ input resistance	Fluke 845AB/AR
Multimeter	4.5 digit display 200Ω to $2 \mathrm{M} \Omega$ resistance ranges, $\pm 0.25 \%$ accuracy	Fluke 8050A, 8060A
Voltage Source	$20 \mathrm{~V}, 10 \mathrm{~mA}$	Fluke 5440A
Cloth Gloves	Clean nylon or cotton	Fluke P/N 684720

4-8. The resistor modules (and the resistors therein) and the Bridge and Calibration PCB assembly are matched to each other during manufacture. The individual resistors are not replaceable separately. The resistor modules and Bridge and Calibration PCB assembly must be replaced as a set.

4-9. GENERAL MAINTENANCE

4-10. Introduction
4-11. The following paragraphs describe the general maintenance procedures for the 752A. These procedures should be completed only by qualified personnel.

4-12. Cleaning

CAUTION

> TO PREVENT POSSIBLE DAMAGE TO THE FRONT PANEL, DO NOT USE AROMATIC HYDROCARBON OR CHLORINATED SOLVENTS ON THE FRONT PANEL OF THE 752A.

4-13. When the 752A is properly cared for and kept in a controlled atmosphere, cleaning is seldom required. Any contamination, particularly oil, in the instrument can contribute to an increase in leakage which may impair accuracy. Cleanliness of the switches is critical because low leakage resistance between switch contacts would shunt a part of the resistor string. This is also true of other internal wiring and, to a lesser extent, on the printed circuit assembly.

4-14. Clean the exterior and front panel with a soft cloth dampened in a mild solution of detergent and water.

CAUTION

> TO INSURE CONTINUED PERFORMANCE WITHIN THE SPECIFICATIONS LISTED IN SECTION 1, USE EXTREME CAUTION WHEN CLEANING THE 752A. IN PARTICULAR, DO NOT USE COMPRESSED AIR TO REMOVE DUST FROM THE INSIDE OF THE INSTRUMENT. AVOID OIL CONTAMINATION OF THE INTERIOR OF THE INSTRUMENT. WEAR CLEAN CLOTH GLOVES (FLUKE P/N 684720 OR EQUIVALENT) WHEN WORKING INSIDE THE INSTRUMENT. DO NOT USE SPRAY CLEANERS ON THE SWITCHES OR POTENTIOMETERS INSIDE THE INSTRUMENT.

4-15. The switches used in the 752A are sealed units. They cannot be cleaned by 'normal' methods. Replace the switch(es) if it is determined that cleaning is necessary.

4-16. Internal Repair

4-17. When making wiring repairs or replacing a component, use 63/37 alloy, non-activated rosin core
solder (Fluke $P / N 961480$ or equivalent) for all connections. Do not use a spray-type cleaner. If replacing a switch or other component, do not remove flux residue from the connection.

4-18. Access Procedure

4-19. Use the following procedures to disassemble the 752A for adjustment or repair.

CAUTION

> TO INSURE CONTINUED INSTRUMENT PERFORMANCE TO THE SPECIFICATIONS LISTED IN SECTION 1 OF THIS MANUAL, DO NOT ALLOW THE INTERIOR OF THE INSTRUMENT TO ACCUMULATE DUST, OIL OR OTHER CONTAMINANTES WHILE OPEN FOR SERVICE. WEAR CLEAN CLOTH GLOVES WHILE SERVICING.

4-20. COVER REMOVAL

4-21. Use the following procedure to remove the top and bottom covers from the 752A. Refer to Figure 4-1.

1. Remove all screws securing the top and/or bottom cover(s).
2. Lift the cover(s) off the instrument.

4-22. Printed Circuit Board Jumper Access
4-23. Use the following procedure to access the printed circuit board jumpers. Refer to Figure 4-2.

1. Remove the top cover.
2. Remove the screws from the guard cover and remove it.
3. Remove the screws securing the service cover and remove it.
4. The jumpers on the printed circuit board are now accessible for servicing.

4-24. PRINTED CIRCUIT ASSEMBLY REMOVAL

4-25. Use the following procedure to remove the printed circuit board from the 752A. Refer to Figure 4-3.

1. Remove both covers and the guard cover.
2. Remove the screws securing the rear bulkhead located near the rear of the 752A and slide to the rear of the instrument.
3. Slide the entire circuit board assembly towards the rear of the instrument, until the retaining tabs are clear of the plastic card holders.

TOP AND BOTTOM

A - COVER REMOVAL
B - FRONT PANEL REMOVAL
LEFT AND RIGHT SIDES

Figure 4-1. Cover Screw Locations
4. Remove the assembly by pushing the side corresponding to the wire harness exit down, to clear the card holders and lifting the opposite side up, to clear the card holders. Lift the assembly clear of the chassis.

CAUTION

DO NOT STRESS OR EXCESSIVELY BEND

 THE WIRE HARNESS CONNECTED TO THE PRINTED CIRCUIT BOARD ASSEMBLY. THE WIRES USE SOLID CONDUCTORS AND BREAK EASILY.5. Remove screws securing the service cover housing and lift the housing clear.
6. Remove the screws securing the printed circuit board.
7. The printed circuit board is now accessible.

4-26. RESISTOR MODULE REMOVAL
4-27. Use the following procedure to remove the resistor modules from 752A Refer to Figure 4-4.

1. Remove both covers and the guard cover.
2. Remove the entire printed circuit board assembly. Fold the assembly towards the front of the 752A.
3. Slide the rear resistor module towards the rear of the instrument, until the cover tabs clear the plastic card holders, then lift up and out.
4. To access the front resistor modules, remove both rear modules and the center bulkhead. Remove the front modules as described in step 3 of this procedure.

4-28. FRONT PANEL REMOVAL

4-29. Use the following procedure to detach the front panel from the 752A:

1. Remove the top and bottom covers.
2. Peel the decal from each of the front moldings, and remove the exposed screws. Remove the molding.
3. Remove the knobs from the three calibrate pots. When removing the knobs, be careful not to lose the springs and washers located under the knobs.
4. Remove the knobs from the MODE and CALIBRATE switches.
5. Pull the front panel free from the chassis.
6. Remove the screws securing the front panel sub-chassis. The sub-chassis will now fold down flat against the table top.

Figure 4-2. Printed Circult Board Jumper Access

Figure 4-3. PCB Access

Figure 4-4. Resistor Module Access

4-30. PERFORMANCE CHECKS

4-31. Front panel resistance measurements and selfcalibration are recommended as a means of verifying the specifications listed Section 1. The various front panel resistances are listed in this section under Troubleshooting. The Self-Calibration procedure described in Section 2 checks all internal resistor networks against each other.

4-32. INTERNAL CALIBRATION (Long-Term Drift Correction)

4-33. The Self-Calibration Procedure compensates for normal day to day drift of the voltage divider and bridge resistor networks. Over extended periods of time, it is possible for the values of the resisto: networks to drift beyond the capabilities of the Self-Calibration potentiometers. Perform the appropriate calibration procedure when either of the following eccur:

1. It is not possible to acnieve equal readings on the Null Detector between the + and - positions of the CALIBRATE switch. Use the Self-Calibration Bridge Long-Term Eritt Correction Procedure to correct this condition.
2. It is not possible to obtain an acceptable Null Detector reading using the $10: 1$ or $100: 1$ pots after obtaining equal Null Detector readings on the + and - CALIBRATE switch positions. Perform the drift correction procedure on the appropriate divider.

4-34. Self-Calibration Bridge Long-Term Correction Procedure

4-35. Use this procedure when it is impossible to achieve equal readings on the Null Detector between the + and positions of the CALIBRATE switch.

1. Perform the $10: 1$ Self-Calibration procedure (steps 1 through 13) in Section 2. Minimize the Vd term in the following expression such that the Calibrate pot is at one end of its rotation:
$\mathrm{Vd}=-(\mathrm{Dp}-\mathrm{Dm}) / 2$
where: Vd =Corrected Null Detector deflection

Dp $=$ Null Detector deflection in $\mu \mathrm{V}$ in the $10: 1+$ switch position

Dm $=$ Null Detector deflection in $\mu \mathrm{V}$ in 10:1- switch position
2. Note the value of Vd .
3. Place the CALIBRATE switch to the $10: 1+$ position.
4. Algebraically add the vaiue of Vd obtained during the Self-Calibration procedure one-half of the value of the pot window ($292 \mu \mathrm{~V}$). The pot window is defined as the total adjustment range of the potentiometer, as seen at the Nuil Detector terminals.

$$
\begin{aligned}
& \mathrm{V}=(\mathrm{Vp} / 2)+|\mathrm{Vd}| \\
& \text { where: } \mathrm{V}= \text { correction voltage } \\
& \begin{aligned}
\mathrm{Vp} & =\text { pot window Voltage } \\
& (292 \mu \mathrm{~V})
\end{aligned} \\
&|\mathrm{Vd}|=\text { absolute value of } \\
& \text { corrected Null Detector } \\
& \text { deflection }
\end{aligned}
$$

5. Apply the following formula to find the amount of correction needed.

$$
\begin{aligned}
& \Delta R p=k(0.024)(V) \\
& \text { where: } \quad \mathrm{V}=\text { correction voltage in } \mathrm{uV} \\
& \mathrm{k}=-1 \text { if } \mathrm{Vd}<0 \\
& \mathrm{k}=1 \text { if } \mathrm{Vd}>0 \\
& \Delta \mathrm{Rp}=\text { change in resistance } \\
& \text { in ohms }
\end{aligned}
$$

6. Dissassemble the 752A and inspect the Bridge and Compensation PCB assembly. Determine the status of jumpers E21 through E30 inclusive. The jumper locations are shown in Figure 4-3. Use Table 4-2 to find the present compensation value (Rc).
7. Add $R c$ to $\Delta R p$ to find the new compensation value ($R c^{\prime}$).
8. Use Table 4-2 to find the new jumper configuration. Select the closest value in Table 4-2. Reinstall the jumpers per Table 4-2 and Rc'.
9. Reassemble the instrument.

4-36. Self-Calibration Bridge Long-Term Drift Correction Example

4-37. While performing the Self-Calibration procedure, the BALANCE control cannot be adjusted for equal Null Detector readings between the + and - settings of the CALIBRATE switch. The closest possible readings are $+15 \mu \mathrm{~V}$ at the + setting and $-5 \mu \mathrm{~V}$ at the - setting, with the BALANCE control set a one extreme.

4-38. The adjustment window for the $10: 1$ CALIBRATE pot has drifted outside of the range of the control. The adjustment window must be shifted 10 uV in
the opposite direction plus one-half of the value of the pot window. Thus:

$$
\begin{aligned}
\mathrm{Vd} & =-[(\mathrm{Dp}-\mathrm{Dm}) / 2] \\
& =-[15-(-5)] / 2 \\
& =-10 \mu \mathrm{~V}
\end{aligned}
$$

and

$$
\begin{aligned}
\mathrm{V} & =\mathrm{Vp} / 2+|\mathrm{Vd}| \\
& =292 / 2+-10 \\
& =156 \mu \mathrm{~V}
\end{aligned}
$$

Solving for $\Delta R p$

$$
\begin{aligned}
\Delta \mathrm{Rp} & =\mathrm{k}(0.024)(\mathrm{V}) \\
& =-(0.024)(156) \\
& =-3.744
\end{aligned}
$$

After inspecting jumpers E21 through E30, the present jumper configuration using Table 4-2 is:

$$
00101=10 \mathrm{ohms}
$$

Adding $\Delta R p$ to this value:

$$
10-3.744=6.256 \mathrm{ohms}
$$

Looking at Table 4-2, the nearest possible values are:

$$
\begin{aligned}
& 01101=5 \text { ohms } \\
& 00101=10 \text { ohms }
\end{aligned}
$$

Interpolation gives $01101=5$ ohms as the best choice. The new jumper configuration is:

Jumper	Condition
E21-E22	Open
E23-E24	Short
E25-E26	Short
E27-E28	Open
E29-E30	Short

The necessary correction is to add jumpers at E23E24. This new configuration gives a shift of:

$$
\begin{gathered}
\Delta R p=10-5 \\
=+5 \text { ohms }
\end{gathered}
$$

and

$$
\begin{aligned}
D & =(41.7)(+5) \\
& =+208.5 \mu \mathrm{~V}
\end{aligned}
$$

This shift is sufficient to move the pot window as close to its centered position as possible.

4-39. 10:1 Divider Long-Term Drift Correction Procedure

4-40. Use the following procedure when the best possible null on the Null Detector exceeds the stated limits at completion of the $10: 1$ Self-Calibration procedure and there is no differnece between the 10:1+ and 10:1- CALIBRATE switch readings on the Null Detector.

Table 4-2. Self-Calibration Bridge Drift Correction Network

JUMPERS					NET RESISTANCE
$\begin{aligned} & \text { E21 } \\ & \text { to } \end{aligned}$	$\begin{gathered} \text { E23 } \\ \text { to } \end{gathered}$	$\begin{aligned} & \text { E25 } \\ & \text { to } \end{aligned}$	$\begin{gathered} \text { E27 } \\ \text { to } \\ \text { E28 } \end{gathered}$	$\begin{gathered} \text { E29 } \\ \text { to } \\ \text { E30 } \end{gathered}$	Rc (ohms)
1	0	0	0	1	0
0	1	1	0	1	5
0	1	0	0	1	10
0	0	1	0	1	10
1	0	0	1	0	15
0	1	1	1	0	20
0	1	0	1	0	25
0	0	1	1	0	25
$\begin{aligned} & 1=\text { jumper installed } \\ & 0=\text { no jumper } \end{aligned}$					

1. Perform the Self-Calibration procedure and set the $10: 1$ calibrate pot for the best possible null. Note this value in $\mu \mathrm{V}$.
2. Algebraically add the Null Detector reading obtained during the Self-Calibration procedure to one-half of the value of the Pot Window ($83 \mu \mathrm{~V}$). Let this sum equal V .
$\mathrm{V}=(\mathrm{Vp} / 2)+\mathrm{Vn}$
where:

$$
\begin{aligned}
& \mathrm{V}=\text { correction voltage in } \mu \mathrm{V} \\
& \mathrm{Vp}=\text { Pot Window Voltage } \\
& (83 \mu \mathrm{~V}) \\
& \mathrm{Vn}=\text { Null Detector reading } \\
& \text { in } \mu \mathrm{V} .
\end{aligned}
$$

3. Apply the following formula to find the amount of correction needed.
$\Delta \mathrm{Rp}=(0.072)(\mathrm{V})$
where:

$$
\begin{aligned}
& \mathrm{V}=\text { correction voltage in } \mu \mathrm{V} \\
& \Delta \mathrm{Rp}=\underset{\text { resistance in ohms }}{\text { change in }}
\end{aligned}
$$

4. Remove the top cover, guard cover, and service cover. Inspect the Bridge and Compensation PCB assembly to determine the status of jumpers El through E10 inclusive. The jumper locations are shown in Figure 4-3. Use Table 4-3 to find the present compensation value (Rc).
5. Add $R c$ to $\Delta R p$ to find the new compensation value (Rc ').
6. Use Table 4-3 to find the new jumper configuration. Select the closest value in Table 4-3. Reinstall the jumpers per Table 4-3 and Rc'.
7. Perform the Self-Calibration Procedure described in Section 2 of this manual.
8. Reassemble the instrument.

4-41. 10:1 Divider Drift Correction Example

4-42. In this example, assume that after performing the Self-Calibration Procedure, the $10: 1$ divider can not be satisfactorily nulled. The closest possible null is 20 uV with the 10:1 CALIBRATE pot turned to its extreme.

4-43. The adjustment window for the $10: 1$ CALIBRATE pot has drifted outside of the range of the control. The adjustment window must be shifted 20 uV in
the opposite direction plus one-half of the value of the pot window. Thus:

$$
\begin{aligned}
\mathrm{V} & =(83 / 2)+20 \\
& =61.5 \mu \mathrm{~V}
\end{aligned}
$$

and

$$
\begin{aligned}
\Delta \mathrm{Rp} & =(0.072)(61.5) \\
& =4.43 \mathrm{ohms}
\end{aligned}
$$

After inspecting jumpers El through E10, the present jumper configuration using Table 4-3 is:

01010 or 38.710 ohms.

Adding $\Delta \mathrm{Rp}$ to this value:
$38.710+(4.43)=43.14 \mathrm{ohms}$
Looking at Table 4-3, the nearest possible values are:

$$
\begin{aligned}
& 00100=43.796 \text { ohms } \\
& 00101=42.857 \mathrm{ohms}
\end{aligned}
$$

Interpolation gives 00101 (42.857 ohms) as the best choice.

The new jumper configuration is:

Jumper	Condition
E9-E10	open
E7-E8	open
E5-E6	short
E3-E4	open
E1-E2	short

The necessary correction is to remove the jumpers from E3 to E4 and E7 to E8. Then add jumpers from E1 to E2 and E5 to E6.

$$
\begin{aligned}
\Delta \mathrm{Rp} & =42.857-38.710 \\
& =4.147 \text { ohms }
\end{aligned}
$$

and
$\mathrm{D}=(-13.89)(4.150) \quad$ where: $\mathrm{D}=$ shift in window in $\mu \mathrm{V}$.
$=-57.16 \mu \mathrm{~V}$.

Table 4-3. 10:1 Divider Drift Correction Network

JUMPERS					NET RESISTANCE
$\begin{aligned} & \text { E9 } \\ & \text { to } \\ & \text { E10 } \end{aligned}$	$\begin{aligned} & \text { E7 } \\ & \text { to } \\ & \text { E8 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { E5 } \\ & \text { to } \\ & \text { E6 } \end{aligned}$	$\begin{aligned} & \text { E3 } \\ & \text { to } \\ & \text { E4 } \end{aligned}$	$\begin{aligned} & \text { E1 } \\ & \text { to } \\ & \text { E2 } \end{aligned}$	Rc
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 48.000 \\ & 46.875 \\ & 45.802 \\ & 44.776 \end{aligned}$
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 43.796 \\ & 42.857 \\ & 41.958 \\ & 41.096 \end{aligned}$
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 40.268 \\ & 39.474 \\ & 38.710 \\ & 37.975 \end{aligned}$
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 37.267 \\ & 36.585 \\ & 35.928 \\ & 35.294 \end{aligned}$
$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 34.682 \\ & 34.091 \\ & 33.520 \\ & 32.967 \end{aligned}$
$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 32.432 \\ & 31.915 \\ & 31.414 \\ & 30.928 \end{aligned}$
$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 30.457 \\ & 30.000 \\ & 29.557 \\ & 29.126 \end{aligned}$
$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 28.708 \\ & 28.302 \\ & 27.907 \\ & 27.523 \end{aligned}$
$\begin{aligned} & 1=\text { jumper installed } \\ & 0=\text { no jumper } \end{aligned}$					

4-44. 100:1 Divider Long-Term Drift Correction Procedure

4-45. Use this procedure when the residual reading on the Null Detector exceeds the stated limits at completion of the $100: 1$ Self-Calibration Procedure. It is assumed that the 10:1 Self-Calibration procedure has been performed satisfactorily. The methods used in the preceding example may also be used here, the only
exceptions being the substitution of Table 4-4 for Table 4-3 and substitution of the correct value of the pot window.

1. Perform the $100: 1$ Self-Calibration Procedure and set the 100:1 calibrate pot for the best possible null. Note this value in $\mu \mathrm{V}$.
2. Algebraically add the Null Detector reading obtained during the Self-Calibration Procedure to
one-half of the value of the pot window. Let this sum equal V .
$V=(V p / 2)+V n$
where:

$$
\begin{aligned}
& \mathrm{V}=\text { Correction Voltage } \\
& \mathrm{Vp}=\begin{aligned}
\text { Pot Window Voltage } \\
143 \mu \mathrm{~V}
\end{aligned} \\
& \mathrm{Vn}=\text { Null Detector Reading }
\end{aligned}
$$

3. Apply the following formula to find the amount of correction needed.
$\Delta \mathrm{Rp}=(0.72)(\mathrm{V})$
4. Remove the top cover, guard cover and service cover from the 752A as described in the Access Procedure section of this manual. Inspect the Bridge and Compensation PCB assembly to determine the status oí jumpers E11 through E20, inclusive. The jumper locations are shown in Figure 4-3. Use Table 4-4 to find the present compensation value (Rc).
5. Add $R c$ to $\Delta R p$ to find the new compensation value ($\mathrm{Rc} c^{\prime}$). Select the closest value from Table 4-4.
6. Use Table $4-4$ to find the new jumper configuration. Reinstall the jumpers per Table 4-4 and Rc'.
7. Perform the Self-Calibration Procedure described in Section 2 of this manual.
8. Reassemble the instrument.

4-46. TROUBLESHOOTING

4-47. The physical construction of the 752A lends itself to ease of troubleshooting. Use the resistance ranges of the Multimeter to isolate gross defects to within a module. Use the resistance ranges of the Multimeter on the various combinations of front panel terminals to isolate switching problems. Some of the correct resistance values are listed in Table 4-5. Inspect the internal wiring and solder connections. Proper soldering with non-activated flux solder (Fluke P/N 961480 or equivalent) and low wiring resistance are critical in this instrument.

Table 4-4. 100:1 Divider Drift Correction Network

JUMPERS					NET RESISTANCE
$\begin{aligned} & \mathrm{E} 11 \\ & \text { to } \\ & \mathrm{E} 12 \end{aligned}$	$\begin{gathered} \mathrm{E} 13 \\ \text { to } \\ \mathrm{E} 14 \end{gathered}$	$\begin{aligned} & \text { E15 } \\ & \text { to } \\ & \text { E16 } \end{aligned}$	$\begin{aligned} & \text { E17 } \\ & \text { to } \\ & \text { E18 } \end{aligned}$	$\begin{gathered} \text { E19 } \\ \text { to } \\ \text { E20 } \end{gathered}$	Rc (ohms)
1	0	0	0	1	0
0	1	1	0	1	30
0	1	0	0	1	60
0	0	1	0	1	60
1	0	0	1	0	90
0	1	1	1	0	120
0	1	0	1	0	150
0	0	1	1	0	150
$\begin{aligned} & 1=\text { jumper installed } \\ & 0=\text { no jumper } \end{aligned}$					

Table 4-5. Front Panel Resistance Measurements

FROM	TO	CAL SWITCH	MODE SWITCH	RESISTANCE VALUE (Ω)
INPUT HI	INPUT LO	OPR	10:1	380K
INPUT HI	INPUT LO	OPR	100:1	2M
REFERENCE STANDARD HI	REFERENCE STANDARD LO	OPR	1V	380K
REFERENCE STANDARD HI	REFERENCE STANDARD LO	OPR	0.01 V	2M
REFERENCE STANDARD HI	NULL DETECTOR LO	OPR	10 V	0
INPUT HI	NULL DETECTOR HI	OPR	10 V	0
INPUT HI	INPUT LO	10:1+	CAL	61K
INPUT HI	INPUT LO	10:1-	CAL	61K
INPUT HI	INPUT LO	100:1+	CAL	177.5K
INPUT HI	INPUT LO	100+1-	CAL	177.5K
INPUT HI	NULL DETECTOR LO	10:1+	752CAL	76K
INPUT HI	NLLL DETECTOR LO	10:1-	752CAL	76K
INPUT HI	NULL DETECTOR LO	100:1+	752CAL	107K
INPUT HI	NULL DETECTOR LO	100:1-	752CAL	107K

Section 5
 List of Replaceable Parts

TABLE OF CONTENTS

ASSEMBLY NAME

ASSEMBLY NAME	DRAWING NO.	TABLE		FIGURE	
		NO.	PAGE	NO.	PAGE
752A Final Assembly	752A	5-1	5-3	5-1	5-5

NO.

752A

TABLE
$5-1 \quad 5-3 \quad 5-1 \quad 5-5$

INTRODUCTION

This section contains the parts list of the 752A Reference Divider. Components are listed alphanumerically.

Parts lists include the following information:

1. Reference Designation.
2. Description of each Part.
3. FLUKE Stock Number.
4. Federal Supply Code for Manufacturers.
5. Manufacturer's Part Number.
6. Total Quantity of Components Per Assembly.

Although Fluke recommends module exchange in place of component-level repair, this manual also includes schematics and a discussion of the theory of operation. Service by non-factory personnel voids the warranty. Use of parts not approved by Fluke may compromise board specifications and operation.

HOW TO OBTAIN PARTS

Components may be ordered directly from the John Fluke Mfg. Co., Inc. or its authorized representative by using the Fluke Stock Number or from the manufacturer by using the manufacturer's part number.

In the event the part you order has been replaced by a new or improved part, the replacement will be accompanied by an explanatory note and installation instructions, if necessary.

To ensure prompt handling of your order, include the following information:

1. Quantity.
2. Fluke Stock Number.
3. Description.
4. Reference Designation.
5. Printed Circuit Board Part Number and Revision Letter.

Parts price information is available from the John Fluke Mfg. Co., Inc. or from its representatives.

Table 5-1. 752A Final Assembly

$\begin{aligned} & \text { REF } \\ & \text { DES } \end{aligned}$	DESCRIPTION	FLUKE STOCK NO.	MFG SPLY CODE	MFG PART NO.	$\begin{aligned} & \text { TOT } \\ & \text { OTY } \end{aligned}$	$\left\|\begin{array}{l} R E C \\ O T Y \end{array}\right\|$	N 0 1 E
	FINAL ASSEMBLY 752A FIGURE 5-1 (752A-T\&B)						
A1	RESISTOR MODULES, MATCHED ASSEMBLY	Module	Exchange	Recommended	1		
E1-E4	BINDING POST ASSEMBLY, RED	637892	89536	637892	4		
E5-E8	BINDING POST ASSEMBLY, BLACK	637900	89536	637900	4		
E9	BINDING POST ASSEMBLY, BLUE	637876	89536	637876	1		
E10	BINDING POST ASSEMBLY, GREEN	637868	89536	637868	1		
E11	BINDING POST, GROUNDING	102707	20584	1444	1		
E12	BINDING POST, KNURLED	102889	20584	1445	1		
E13	LJG, SOLDER	101501	79963	327	1		
H1	SPRING, TENSION	163170	89536	163170	4		
H2	WASHER, FLAT, NYLON	682385	89536	682385	5		
H3	WASHER, FLAT, SS, 0.254 ID	649772	86928	5710-299-10	6		
H4	SCREW, PHP, 6-32 X 1/4	152140	89536	152140	10		
H5	SCREW, FHP, 8-32 X 1/2	114355	89536	114355	2		
H6	WASHER, FLAT, SS, 0.254 ID	649772	86928	5710-299-10	6		
H7	NOT, NYLON, PUSH-IN	222414	83058	PC-97726	16		
H8	NUT, HEX, 1/4-28	110619	89536	110619	1		
H9	WASHER, FLAT	312538	89536	312538	1		
H10	WASHER, SPLIT LOCK, $1 / 4$	111518	89536	111518	1		
H11	SCREW, PHP, 6-32 X 1/4	152140	89536	152140	8		
H12	SCREW, RHP, 8-32 X 5/8	114983	89536	114983	4		
H13	SCREW, FHP, 8-32 X 5/16	281725	89536	281725	8		
H14	SCREW, FHP, 8-32 X 7/16	306159	89536	306159	12		
H15	SCREW, PHP, THD/FORM, 8-32 X 1/2	306233	89536	306233	16		
H16	SCREW, PHP, 6-32 X 1/4	152140	89536	152140	18		
H17	SCREW, PHP, 6-32 X 1/2	152173	89536	152173	4		
H18	SCREW, FHP, UNDERCOT, 6-32 X 1/4	320093	89536	320093	4		
H19	SCREW, FHP, 6-32 X 1/4	320093	89536	320093	4		
H2O	SCREW, PHP, 6-32 X 1/4	152140	89536	152140	16		
MP1	FRONT PANEL	645077	89536	645077	1		
MP2	BUSHING, NYLON	339978	89536	339978	2		
MP3	BULKHEAD, FRONT	645143	89536	645143	1		
MP4	CLUTCH, VARIABLE RESISTOR	645655	89536	645655	6		
MP5	SHAFT, VARIABLE RESISTOR	645663	89536	645633	3		
MP6	BRACKET, VARIABLE RESISTOR	645671	89536	645671	1		
MP7	ISOLATOR, SWITCH	645648	89536	645648	1		
MP8	EXTENSION, SHAFT INSULATOR	645044	89536	645044	2		
MP9	BUSHING, PANEL	649756	89536	649756	3		
MP10	RING, RETAINING	168922	89536	168922	3		
MP11	REAR PANEL	645085	89536	645085	1		
MP12	CHASSIS, SIDE	645101	89536	645101	2		
MP13	CHASSIS, GUARD	645135	89536	645135	1		
MP14	BULKHEAD, CENTER	645150	89536	645150	1		
MP15	TRIM, SIDE	642298	89536	642298	2		
MP16	INSERT, SIDE TRIM	642306	89536	642306	1		
MP17	HANDLE	642314	89536	642314	1		
MP18	STRAP, HANDLE	644880	89536	644880	1		

Table 5-1. 752A Final Assembly (cont)

$\begin{aligned} & \text { REF } \\ & \text { DES } \end{aligned}$	DESCRIPTION	$\begin{aligned} & \text { FLUKE } \\ & \text { STOCK } \\ & \text { NO. } \end{aligned}$		MFG PART NO.	$\begin{aligned} & \text { TOT } \\ & \text { QTY } \end{aligned}$	$\left\|\begin{array}{l} \text { REC } \\ \text { QTY } \end{array}\right\|$	N 0 E
MP19	ADHESIVE, SIDE TRIM	680850	89536	680850	2		
MP20	HANDLE RETAINER	579052	89536	579052	2		
MP21	BRACKET, HANDLE SUPPORT	632414	89536	632414	2		
MP22	INSOLATOR, CHASSIS	644906	89536	644906	4		
MP23	SPRING, COII, SS	649764	83553	C0300-022-0690S	3		
MP24	CORNER ANGLE BRACKET	298166	89536	298166	2		
MP25	NAMEPLATE, SERIAL	472795	89536	472795	1		
MP26	CORNER, PLASTIC	656231	89536	656231	4		
MP27	FOOT, REAR PANEL	657064	89536	657064	4		
MP28	KNOB, KNURLED, DARK PEWTER	683805	89536	683805	3		
MP29	KNOB, POINTER, DARK PEWTER	683813	89536	683813	2		
MP30	CLAMP, CABLE	172080	89536	172080	5		
MP31	BOTTOM COVER	645127	89536	645127	1		
MP32	BULKHEAD, REAR	645168	89536	645168	1		
MP33	PARTITION, MODULE	645630	89536	645630	1		
MP34	MODOLE COVER, LARGE	645531	89536	645531	1		
MP35	FOOT, SINGLE BAII TYPE (DARK OMBER)	653923	89536	653923	4		
MP36	BAII INSTROMENT	605931	89536	605931	2		
MP37	TOP, COVER	645119	89536	645119	1		
MP38	GUARD, COVER	645176	89536	645176	1		
MP39	access flate, module	645549	89536	645549	1		
MP40	DECAL, FRONT CORNER	659235	89536	659235	2		
MP4 1	DECAL, REAR CORNER	685206	89536	685206	2		
MP42	MODOLE SERVICE KIT (not shown)	644872	89536	644872	AR		
MP43	NON-ACTIVATED FLUX SOLDER (not shown)	961480	89536	961480	AR		
R55	RES, VAR, 200 +/-3\%, 2W	542928	80294		3		
R455	RES, VAR, 200 +/-3\%, 2W	542928	80294	3500-2-201	REF		
R555	RES, VAR, 200 +/-3\%, 2W	542928	80294	3500-2-201	REF		
RT1	THERMISTOR, 1K +/-40\%		50157		1		
S1	SWITCH ASSEMBLY, MODE	644963	89536	644963	1		
S2	SWITCH ASSEMBLY, CALIBRATE	644971	89536	644971	1		
TM1	INSTRUCTION MANDAL, 752A	645069	89536	645069	1		
W1	WIRE, SIIVER FLATED, \#18 AWG (not shown)	203059	89536	203059	A/R		
W2	WIRE, BUS, 22 AWG HARNESS ASSEMBLY	$\begin{aligned} & 115469 \\ & 650986 \end{aligned}$	$\begin{aligned} & 89536 \\ & 89536 \end{aligned}$	$\begin{aligned} & 115469 \\ & 650986 \end{aligned}$	AR 1		

Figure 5-1. 752A Final Assembly

Figure 5-1. 752A Final Assembly (cont)

Figure 5-1. 752A Final Assembly (cont)

Figure 5-1. 752A Final Assembly (cont)

Section 6 Accessories

6-1. INTRODUCTION

6-2. This section of the manual describes the accessories available for use with the model 752A.

6-3. DUAL MOUNTING FASTENER (M00-800-523)

6-4. The Dual Mounting Fastener is a $8-32$ threaded fastener designed for bolting two half-rack width instuments together. The Dual Mounting Fasteners may be used for either dual rack mounting applications (as used in the M07-200-603 Full-Width Rack Mount Kit) or dual table top applications. Four M00-800-523 fasteners are required for each pair of half-rack width instruments.

6-5. HALF-WIDTH RACK MOUNT KIT (M07-203-601)

6-6. The Half-Width Rack Mounting kit permits the 752A to be rack mounted. A blank filler panel is supplied, allowing left or right hand offset mounting. Assembly instructions are supplied with the kit.

6-7. FULL- WIDTH RACK MOUNT KIT (M07-200-603)

6-8. The Full Width Rack Mounting kit permits the 752A to be rack mounted side-by-side with another half rack width instrument. This rack mounting method requires the 752 A to be bolted to the adjacent instument. To facilitate bolting the instruments together, four M00-800-523, Dual Mounting Fasteners are included with the kit. Assembly instructions are supplied with the kit.

6-9. LOW THERMAL EMF CABLE ASSEMBLY (5440A-7002)

6-10. The Low Thermal EMF Cable Assembly minimizes the effects of thermal emf errors in test and calibration setups. The plugs used are made of the same material as the jacks used in the instument. Connections between the cables and plugs are carefully made to minimize generation of thermal errors.

General Information

$7-1$. This section of the manual contains generalized user information as well as supplemental information to the List of Replaceable Parts contained in Section 5.

Federal Supply Codes for Manufacturers

D9816	01101	02697	04423
Westemann Wilhelm Augusta-Anlage	Wabash Inc	Parker-Hannifin Corp.	Telonic Berkley Inc.
Mannheim-Nackarau Gemany	(Formerly Wabash Magnecies) Wabash, in	O-Ring Div Lexington, KY	Lagura Beach, CA
S0482			04713
Soay Corp.	01121	02735	Motorola Inc.
Tokyo, Japan	Allen Bradley Co. Milwaukee WI	RCA.Solid Siate Div. Somerville, NJ	Semiconductor Group Phoenix, AZ
S3774			
Oshino Elcetric Lamp Works	01281		04946
Tokoyo, Japan	TRW Electronics \& Defense Secior RF Devices	02768 ITW (IL Toal Works)	Standard Wire and Cable Rancho Dominquer, CA
0AD86	Lawndale, CA	Fastex Division	
IN General		Des Plaines, Il	05173
E Paso, TX	01295		General Radio
	TX Instruments Inc.	02799	NY,NY.
OAES9	Saniconductor Group	Arco Elearonics Inc.	Replaced by:
Autosplice Inc.	Dallas, TX	Chatsworh, CA	
Woodside, NY			
OBW21	Genicam	Nylon Molding Corp.	Genradinc.
Burlington, MA	Waynesboro, VA	Monroviz, CA	Concord, MA
	01537	03445	05236
OANFO	Motorola Communications \&	Lercon Electronics Inc	Jonathan Mfg. Co.
Topaz Semiconductor Ine	Electronics Inc.	Burbank, CA	Fullerton, CA
San Jorc, CA	Franklin Park, IL		
		03508	05245
ODSM7	01686	General Electric Co.	Corcom Inc.
Conduaive (Pkg) Containers Inc.	RCL Electronic/Shalleross Inc.	Semiconductor Producas	Libenyville, IL
Brookrield, WI	Electro Components Div. Manchester, NH	\& Bateries Aubum, NY	
OCLN7			05276
Emhar Fastering Group	01884	03797	ITT Pomara
Shelton, CT	Sprague Electric Co. (Now 56289)	Genisco Technology Corp. Eltronics Div.	Electronics Div. Pomona, CA
	-	Rancho Dominque, CA	
OFB81	01961		05277
S-Mos Systems Inc.	Varian Associates Inc.	03877	Westinghouse Elec. Corp.
San Jore, CA	Pulse Engincering Div.	Gilben Enginecring Co.Inc	Semiconductor Div.
	Convoy, CT	Incon Sub of Transitron	Youngwood, PA
OFFP1		Electronic Corp.	
Everready LID	01963	Glendale, AZ	05347
Ever Ready Spocial Bauerry Div.	Cherry Electrical Products Corp		Ulironix Inc
Dawley Tclford Salop UK	Waukegan, IL	03888	Grand Junction, CO
		KDI Electronics Inc.	
00199	02111	Pyrofilm Div.	05397
Keamy, NJ	Spcerol Electranics Corp. City of Industry, CA	Whippany, NJ	Union Carbide Corp. Materials Systems Div.
		03911	Cleveland. OH
00213	02114	Clairex Corp.	
Nytronics Comp. Group Inc.	Amparex Electranic Corp.	Claircx Electronics Div.	05571
Damlingon, NC	Ferrox Cube Div. Saugeries, NY	Mount Vemon, NY	Sprague Electric Co. (Now 56289)
00327		03980	
Welwyn Intemational Inc.	02131	Muinhead Inc.	05574
Westake, OH	General Instrument Corp. Govemment Systems Div.	Mountainside, NJ	Viking Connectors Inc Sub of Criton Corp.
00656	Westwood, MA	04009	Chatsworth, CA
Aerovox Corp.		Cooper Industries, Inc.	
New Bedford, MA	02395	Arrow Har Div.	05791
	Somar Radio Corp.	Harford, CT	LYN-TRON
00686	Hollywood, IV		Burbank. CA
Film Capacitors Lnc.		04217	
Passaic, NJ	02533	Essex Intemational Lnc.	
	Leigh Instruments Lid.	Wire \& Cable Div.	05820
00779	Frequency Control Div.	Araheim, CA	EG \& G Wakefield Enginoening
AMP, Inc.	Don Mills, Ontario, Canada		Wakeficld, MA
Harrisburg, Pennsylvania		04221	
	02606	Midland-Ross Corp.	05839
00853	Fenwal Labs	Midicx Div.	Advance Elecrical
Sangamo Weston Lac	Division of Travenal Labs	N. Mankato, MN:	Chicago, IL
Components Div	Morion Grove, IL		
Pickens, NC		04220	
	02660	AVX Corp.	05972
01091	Bunker Ramo-Eltra Corp.	AVX Ceramics Div.	Loctite Corp.
Allied Plastics Co.	Amphenol NA Div.	Myrle Beach, SC	Newington, CT
Los Angcles, CA	Broadvicw, IL		

Federal Supply Codes for Manufacturers (cont)

06001	07047	08111	18715
General Elearic Co.	Ross Milton Co., The	MF Elcetronics	(United Shoc \& Nylock Corp)
Electric Capacitor Produce	Southampton, PA	New Rochelle, NY	-Nylock Fastener Corp.-
Section			Paramus.NJ
Columbia, SC	07138	08235	
	Westinghouse Electric Corp.	Industro Transistor Corp.	10059
06141	Industrial \& Govemment	Long Island City, NY	Barker Enginecring Corp.
Fairchild Weston Systems lnc.	Tube Div.		Kenilwarh, NJ
Data Systems Div.	Hosscheads, NY	08261	
Sarasota, FL		Spectra-Strip	10389
	07233	An Elira Co.	III Tool Wodks Inc.
06192	Benchmark Technology Inc.	Garden Grove, CA	Lican Div.
La Deau Mfg. Co.	City of Industry, CA		Chicago. IL
Gleadale, CA		08445	
	07239	Elocri-Cord Mfg., Inc	11236
06229	Biddle Instruments	Westrield, PA	CTS Corp.
Electrovera Inc.	Blue Bell, PA		Resistor Products Div.
Elmsford, NY		08530	Beme. ${ }^{\text {IN }}$
	07256	Reliance Mica Corp.	
06383	Silicon Transistor Corp.	Brooklym, NY	11237
Panduit Corp.	Sub of BBF Inc.		CTS Corp of CA
Tinley Park, IIL	Chelmsford, MA	08718	Electro Mechanical Div.
		ITT Cannon Electric	Paso Robles, CA
06473	07261	Phocnix Div.	
Bunker Ramo Corp.	Avnes Corp.	Phocrix, AZ	11295
Amphenol NA Div.	Culver City, CA		ECM Mowor Co.
SAMS Operatioa		08806	Schaumburg, IL
Chatsworth, CA	07263	General Electric Co.	
	Fairchild Semiconductor	Minaure Lamp Products	11358
06540	North American Sales	Cleveland, OH	Columbia Broadcasting System
Mite Corp	Ridgeview, CT		CBS Electronic Div.
Amatom-Electrical Div		08863	Newburypar, MA
	07344	Nylomatic	
06555	Bircher Co. Inc., The	Fallsington, PA	11403
Beode Electrical Instrument	Rochester, NY		Vacuum Can Co.
Persacook, NH		08988	Bert Coffoc Maker Div.
	07374	Skouic Electronics Inc.	Chicago, IL
06665	Optron Corp	Archbald, PA	
Precision Monolithics	Woodbridga, CT		11502 (can also use 35009)
Sub of Boums Inc.		09021	TRW Inc.
Santa Clara, CA	07557	Airco Inc.	TRW Resistive Products Div.
	Campion Co. Inc.	Airco Electronics	Boone, NC
06666	Philadelphia, PA	Bradford, PA	
General Devices Co. Inc.			11503
INpolis, IN	07597	09023	Keystone Columbia Inc.
	Bumdy Corp.	Comell-Dublier Electronics	Freemont, \mathbb{N}
06739	Tape/Cable Div.	Fuquay-Varina, NC	
Electron Corp.	Rochester, NY		11532
Litulan, CO		09214	Teledyne Relays Teledyne
	07716	General Eloctric Co.	Industries Inc.
06743	TRW Inc. (Can use 11502)	Scriconductor Produces Depl	Hawhome, CA
Gould Inc.	IRC Fixed Resistors/	Aubum, NY	
Foil Div.	Budington		11711
Eastlake, OH	Burlington, VT	09353 C and K Components Inc.	Gencral Instrument Corp. Rectifier Div.
06751	07792	Newnon, MA	Hicksville, NY
Components Inc.	Lema Enginoaring Corp.		
Semeor Div.	Northampton, MA	09423	11726
Phocnix, AZ		Scientific Components Inc.	Qualidyne Corp.
	07810	Santa Barbara, CA	Sania Clara, CA
06776	Bock Corp.		
Robinson Nugent Inc.	Madison, WI	09922	12014
New Albany, IN		Bumdy Corp.	Chicago Rivet \& Machine Co.
	07910 Teledyne Semiconductor	Norwalk, CT	Naperville, Il
06915	Min. View, CA	09969	12020
Richeo Plastic Co.		Dale Electronics Inc.	Ovesair
Chicago, IL	07933	Yankton, SD	Div. of Electronic Technologies
	Raytheon Co.		Charlouesville, VA
06961	Semiconductor Div.	09975	
Vemitron Comp.	Mountain View, CA	Burroughs Corp.	12038
Piezo Electric Div.		Electronics Comporents	Simco
Bodfard, OII	08FG6	Detroit, MI	(Div of Ransburg Corp)
	Calmos Systems Inc.		Hatield, PA
06980	Kanata, Onll Canada	1 1791	
EIMAC		LFE Electronics	12040
(See Varian)	08049	Danvers, MA	National Semiconductor Corp.
San Carlos, CA	Dallas Semiconductor		Danbury, CT

Federal Supply Codes for Manufacturers (cont)

12060	13050	14704	16473
Diodesinc.	Pouer Co.	Crydom Controls	Cambridge Scientife Industrics
Northidga, CA	Wesson, MS	(Division of Int Recifice)	Div. of Chemod Corp.
12136	13103		
PHC Industries Inc.	Thermalloy Co., Inc.	14752	16733
Fomely Philadelphia Handie Co. Camder, NJ	Dallas, TX	Elearo Cube Inc. San Gabriel CA	Cablewave Systems Inc. North Haven, CT
	13327		
12300	Soliton Devices Inc.	14936	
AMIF Canada Lid.	Tappan, NY	General Instrument Corp.	16742
Porer-Brumfield		Discrese Semi Conductor Div.	Paramount Plastics
Guelph, Ontario, Canada	13511	Hicksvilla, NY	Fabricators Inc.
	Bunker-Ramo Corp.		Downey, CA
12323	Amphenol Cadre Div.	14949	
Practical Automation Inc.	Los Gatos, CA	Trampeter Hoctronios	16758
Shelton, CT		Chatsworth, CA	General Motors Corp. Deloo Electronics Div.
12327	13606	15412	Kokamo, $\mathrm{IN}^{\text {N }}$
Freeway Corp.	Sprague Electric Co.	Amiron	
Cleveland, OH	(lise S6289)	Midlothian, II	17069
			Circuit Structures Lab
12406	13689	15542	Burbank, CA
Elpac Electronics Inc.	SPS Technologies Inc.	Scientific Components Corp.	
Santa Ana, CA	Hatreld, NJ	Mini-Circuits Laboratory Div. Broaklyn, NY	17117 Electronic Molding Corp.
	13764		Woonsocket, RI
12443	Micro Plastics	15636	
Budd Co., The	Flippin, AZ	Elec-Trol Inc.	17338
Plastics Products Div.		Saugus, CA	High Pressure Eng. Co. Inc.
Phocrixville, PA	13919		OK City, OK
	Bur-Brown Research Corp.	15782	
12581	Tucson, AZ	Bausch \& Lomb Inc.	17504
Hitachi Metals Inemational Lid.		Graphics \& Control Div.	Aluminum Filier Co.
Hitachi Magna-Lock Div.	14099	Austin, TX	Carpinteria, CA
Big Rapids, MO	Semicch Corp.	15801	
12615	Newbury Park, CA	Fcnwal Eletranics Inc.	${ }_{\text {Aldanic Semiconductors Inc. }}$
US Teminals Inc.	14140	Div. of Kidde Inc.	Asbury Park, NJ
Cincinnati. OH	McGray-Edison Co.	Framingham. MA	
	Commercial Development Div.		17745
12617	Manchester, NHI	15818	Angrirokm Precision, Inc.
Hamlin Inc.		Tclodyne Inc. Co.	Hagerstown, MD
LaKe Mills, WI	14189	Teledyne Scmiconducior Div.	
	Orronics, Inc.	Mountain View, CA	17856
12673	Ordando. FL		Siliconix Inc.
Wesco Electrical		15849	Santa Clarz, CA
Groenficid, MA	14193	Useco Inc.	
	Cal-R-Inc	(Now 8824S)	18178
	Santa Monica, CA		E G \& Gvactee Inc.
12697		15898	St. Louis, MO
Clarostat Mfg. Co. Inc.	14301	International Business	
Dovar. MH	Anderson Eloctronics	Machines Corp.	18235
	Hollidaysburg. PA	Essex Junction, VT	KRL/Bantry Components Inc.
12749			Manchester, NH
James Electronic Inc.	14329	16068	
Chicago, IL	Wells Electronics Inc.	Intemational Diode Div.	18310
	South Bend, IN	Hanison, N	Concord Electronics
12856			New York, NY
MicroMetals Inc.	14482	16162	
Anaheim, CA	Waikins-Johnson Co.	MMI	18324
	Palo Alto, CA	Southficld, MI	Signetios Corp.
12881			Sacramerto. CA
Metex Corp.	14552	16245	
Edison, NJ	Microsemi Carp. (Formerly Micro-Semiconductor)	Corap Inc. Olean, NY	
12595	Santa Ana, CA		Padex Corp.
Cleveland Electric Motor Co.		16258	Mehtuen, MA
Cleveland. OH	14604	Space-Lok Inc.	
	Elmwood Sensors, Inc	Burbank, CA	18520
12954	Pawucker. RI		Sharp Electronics Corp.
Microsemi Corp.		16352	Paramus. NJ
Components Group	14655	Codi Corp.	
Scousdale, AZ	Comell-Dublier Eloctronics Div. of Federal Pacific	Lindon, NJ	18542 Wabash Inc.
12969	Electric Co. Govt Cont Dept,	16469	Wabash Relay \& Electronics Div.
Unitrode Corp.	Nicwark, NJ.	MCL Inc.	Wabash, IN
Lexington, MA		LaGrange, IL	

Federal Supply Codes for Manufacturers (cont)

18565	2 Y 384	23732	26402
Chomerics Inc.	North American Philips Lighting Corp.	Tracar Applied Sciences Inc.	Lumex, Inc.
Wobum, MA	Van Wers OH	Rockville, MD	Bayshore, NY
18612	20584.	23880	26629
Vishay Intertechnology Inc. Vishay Resistor Products Group Malvem, PA	Enochs Mfg. Inc.	Stanford Applied Engineering	Frequency Sources Inc.
	INpolis, IN	Santa Clara, CA	Sources Div. Cheimsford, MA
	20891	23936	
18632	Cosar Corp.	William J. Purdy Co.	26806
Norton-Chemplas	Dallas, TX	Pamotor Div.	American Zeuler Inc.
Santa Monica, CA		Buringame, CA	Isvine, CA
	21317		
18677	Electronics Applications Co.		27014
Scanbe Mfg. Co.	El Monte, CA	24347	National Semiconductor Corp.
Div. of Zero Comp.		Penn Engineering Co.	Santa Clara, CA
El Monte, CA	21604	S. El Monte, CA	
	Buckeye Stamping Co.		27167
18736	Columbus, OH	24355	Coming Glass Works Coming
Voltronics Corp.		Analog Devices Inc.	Elearoxics
East Hanover, NJ	21845	Norwood, MA	Wilmington, NC
	Solitron Devices Inc.	24444	27264
18786	Rivera Beach, FL	General Semiconductor	Molex Inc.
Micro-Power		Induscres, Inc.	Lisle, IL
Long Island City, NY	21847	Tempe, AZ	
	Aerech		27440
18927	Now TRW Microwave Inc.	24546	Industrial Screw Products
GTE Products Corp.	Sunnyvale, CA	Bradford Electronics	Los Angeles, CA
Precision Material Products		Bradford, PA	
Busincss Pars Div.	21962		27494
Titusville, PA	Vectron Corp.	24618	Siaffall, Inc.
	Replaced by: S.W. Electronics	Transcon Mfg.	Providence, RI
19080		Now: D.J. Associates Inc.	
Robinson Electronics Inc.	22526		
San Luis Obispo, CA	DuPont, EI DeNemours \& Co. Inc.	24655	27745
	DuPont Connector Systems	Genrad Inc.	Associated Spring Bames Group Inc.
19112	Advanced Products Div.	(Replaced General Radio 05173)	Syracuse, NY
Garry Corp.	New Cumberiand, PA	Concord, MA	
Langhome, PA			27918
	22626	24759	Component Parts Corp.
19315 Bendix Cop. The	Micro Semiconductor (Now 14552)	Lenox-Fugle Electronics Inc. South Plainfield, NJ	Bellmore, NY
Bendix Corp., The Niavigation \& Control Group	(Now 145S2)		27956
Terboro, NJ	22670	24796	Relcom (Now 14482)
	GM Nameplate	AMFInc.	
$\begin{aligned} & 19451 \\ & \text { Perine Machine Tool Corp. } \\ & \text { Kent WA } \end{aligned}$	Scaule, WA	Pouter \& Brumfield Div.	28175
		San Juan Capistrano, CA	Alpha Metals
	22767		Chicago, IL
	ITT Semiconductors	24931	
Delta Elecronics Alexandriz, VA	Palo Alto, CA	Specialty Connector Co.	28198
		Greenwood, IN	Positronic Industries
			Springrield, MO
	22784	24995	
19613	Palmer Inc.	ECS	28213
MN Mining \& Mfg. Co.	Cleveland, OH	Granis Pass, OR	MN Mining \& Mfg. Co.
Textool Products Dept.		2088 .	Consumer Products Div.
Electronic Product Div.	23050	25088	3M Center
Irving, TX	Product Comp. Corp.	Sicmen Corp.	Saint Paul, MN
	Mount Vemon, NY	Isilen, NJ	
19647			28309
Caddock Eloctronics Inc.	23223	25099	Kaiser
Riversica, CA	CTS Microclectranics Lafayene, NY	Cascade Gasket Kent, WA	Minete,AIL
19701			28425
Mcpco/Centralab Inc.	23237	25403	Serv-O-Link
A N. American Philips Co.	I.R.C., Inc.	Amperex Electronic Corp.	Euless, TX
Mineral Wells, TX	Microcircuis Divison	Semiconductor \& Micro-Cirauit Div.	
	Philadelphia, PA	Slacersville, RI	28478
			Deltrol Corporation
$2 \mathrm{B178}$	23302	25435	Deltrol Coritrols Div.
Wire Products	S.W. Electronics \& Mfg. Corp.	Moldronies, Ine	Milwaukee WI
Cleveland, OH	Cherry Hill. NJ	Downers Grove, Il	
			28480
2 K 262	23730	25706	Hewlett Packard Co.
Boyd Corporation	Mark Eyelct and Stamping Inc.	Dabum Electronic \& Cable Corp.	Corporate HQ
Porland, OR	Wolcors, CT	Norwood, NJ	Palo Alto, CA

Federal Supply Codes for Manufacturers (cont)

28484	31433	33246	36701
Emerson Electric Co.	Kemet Electorics Corp.	Epoxy Technology Inc.	Van Waters \& Rogers
Gearmaster Div.	Simponville, NC	Billeria, MA	Valley Field, Qucboc, Canada
McHenry, IL			
	31448	33292	37942
28520	Ammy Safeguard Logistios Command	Pioneer Sterilized Wiping Cloth Co.	Mallory Capacitor Corp.
Heyco Molded Products	Huntsville, AL	Porland, OR	Sub of Emhart Industries
Kenilworth, NJ			INpolis, ${ }^{\text {N }}$
	31471	33297	
28932	Gould Ine	NEC Electronics USA inc.	39003
Lumax Industrials, Inc	Semiconducior Div	Electronic Arrays Inc. Div.	Maxim Industries
Altoona, PA	Santa Clara, CA	Moumtain View, CA	Middleboro, MA
29083	31522	33919	4F434
Monsanto Co.	Metal Masters Inc.	Norck Inc.	Plastic Sales
Santa Clara, CA	Baldwin, MS	Cranstor, RI	Los Angeles, CA
29604	31746		40402
Stackpole Components Co.	Cannon Electric	34114	Roderstein Electronies Inc.
Raleith, NC	Woodbury. TN	Oak Industries Rancho Bemardo, CA	Statesville, NC
29907	31827		42498
Omega Engincering Inc.	Budwis	34263	National Radio
Stamford, CT	Ramona, CA	CTS Electronics Corp. Brownsville, TX	Melrose, MA
3D536	31918		43543
Aimsco Inc.	ITT-Schadow	34333	Nytronics Inc.(Now 53342)
Seaule, WA	Eden Prairic, MN	Silicon General Inc. Garden Grove, CA	43744
30035	32293		Panasonic Industrial Co.
Jolo Industries Inc.	Intesil	34335	San Antonio, TX
Garden Grove, CA.	Cuperino, CA	Advanced Micro Devices (AMD)	
		Sunnyvale, CA	43791
30045	32539		Datron Systems
Solid Power Corp.	Mura Corp.	34359	Wilkes Barra, PA
Famingdale, NY	Westbury, Long Island, N.Y. .-	MN Mining \& Mfg. Co. Commercial Office Supply Div.	44655
30146	32559	Saint Paul, MN	Ohmite Mfg. Co.
Symbex Corp.	Bivar		Skakie, IL
Painesvilla, OH	Sania Ana, CA	34371	
		Harnis Corp.	47001
30148	32719	Harris Semiconduetor	Lumberg Inc.
AB Enterprise Inc.	Siltronics	Products Group	Richmond, VA
Ahoskic, NC	Saniz Ana, CA	Mclboume, FL	
			47379
30161	32767	34576	ISOCOM
Aavid Engineering Inc.	Grifith Plastios Corp.	Rockwell Intemational Corp.	Campbell, CA
Laconia, NH	Burlingame, CA	Newpon Beach, CA	
			49569 9
30315	32879 (34641	IDT (Intemational Development \& Trade)
Itron Corp. San Diego, CA	Advanced Mechanical Components Norhridge, CA	Instrument Specialties Euless, TX	Dallas, TX
			49671
30323	32897	34649	RCA Corp.
IL Tool Works Inc.	Murata Erie North Amcrica Inc.	Intel Corp.	New Yoric, NY
Chicago, Il	Carlisle Operaions	Santa Clara, CA	
	Cartisle, Pennsylvania		49956
30800		34802	Raythoon Company
General Instrument Corp.	32997	Electromorive Inc.	Execative Offices
Capacitor Div.	Boums Inc.	Kenilworth, NJ	Lexingion, MA
Hicksville, NY	Trimpor Div. Riverside, CA	34848	SD590
30838		Harwell Special Products	Mostek Corp.
Fastec	33025	Placentia, CA	Replaced by: SGS Thompson Microelec
Chicago, Ill	M/A ComOmni Spectra, Inc. (Replacing Omni Spectra)	35009	tronics
31019	Microwave Subsystems Div.	Renfrew Elecric Co. Lud.	SFS20
Solid State Scientific Inc. Willow Grove, PA	Tempe, AZ	IRC Div. Toronto, Ontario, Canada	Panel Components Corp. Santa Rosa, CA
31091	33096	35986	5P575
Alpha Industries Inc.	CO Crystal Corp.	Amrad	Nobel Electranics
Microeloctronios Div.	Lovcland, CO	Melrose Park, IIL	Suffem, NY
Ifatield, PA			
	33173	36665	5W664
31323	General Electric Co.	Mitel Corp.	NDK
Merro Supply Company Sacramento, CA	Owensboro, KY	Kanata, Ontario, Canada	Div. of Nihon Dempa Kogyo LTD Lynchburg, VA

Federal Supply Codes for Manufacturers (cont)

50802	51499	52840	54937
Dernison Mfg. Co.	Amiron Corp.	Western Digital Corp.	DeYoung Mfg.
Framingham, MA	Boston, MA	Costa Mesa, CA	Bellevue, WA
50088	51506.	53021	54590
SGS - Thomson Microelectronics Inc.	Accurate Screw Machine Co.	Sangamo Werton Inc.	RCA Corp.
Carrolltion, TX	(ASMCO) Nulley, NJ	(Sec 06141)	Electronic Components Div. Cherry Hill, NJ
50120	51605	53036	
Eaglo-Picher Industries Inc.	CODI Semiconductor Ine.	Textool Co.	55026
Electronics Div. CO Springs, CO	Kenilworth, NJ	Houston, TX	American Gage \& Machine Co. Simpson Electric Co. Div.
	51642	53184	Elgin, IL
50157	Centre Enginearing Inc.	Xciton Corp.	
Midwert Components Inc.	State College, PA	Lathan, NY	55112
Muskegon, MS			Plessey Capacitors Inc.
	51705	53217	(Now 60935)
50356	ICO/Rally	Technical Wire Products Inc.	
Teac Corp. of America	Palo alto, CA	Santa Barbara, CA	55261
Industrial Products Div			LSI Computer Systems Inc.
Montebello, CA	51791	53342	Melville, NY
	Statek Corp.	Opt Industries Inc.	
50364	Orange, CA	Philliprburg, NJ	55285
MMI, Inc.(Monolithic Memorics Inc)			Beroquis Co.
Military Produces Div.	51984	53673	Minneapolis, MN
Santa Clara, CA	NEC America Inc. Falls Church, VA	Thompson CSF Components Corp. (SemiconductorDiv)	55322
50472		Conaga Park, CA	Samtech Inc.
Metal Masters, Inc.	52063		New Albany, IN
City of Industry, CA	Exar Integrated Systems	53718	
	Sunnyvale, CA	Airmold/W. R. Grese \& Co.	55408
50541		Roanoke Rapids, NC	STI-CO Industries Co
Hyperronics Corp.	52072		Buffalo, NY
Hudson, MA	Circuis Assembly Corp.	53848	
	Irvine, CA	Slandard Microsystems	55464
50558		Itauppauge NY	Central Samiconductor Corp.
Electronic Coneepts, Inc.	52152		Hauppzuge, NY
Eatanown, NJ	MN Mining \& Mfg.	53894	
	Saint Paul, MN	AHIAM Inc.	55557
50579		RanchoCA, CA	Microwave Diode Corp.
Líronix Inc.	52333		W.Stewasstown, NH
Cuperino, CA	API Electronics	53944	
	Haugpauge, Long Island, NY	Glow-Lite	55566
50891		Pauls Valley, OK	R A F Electronic Hardware Inc.
Scmiconductor Technology	52361		Seymour, CT
Swar, FL	Communication Systems	54178	
	Piscataway, NJ	Plasmetex Industries Inc.	55576
50934		San Marcos, CA	Symerck
Tran-Tec Corp	52500		Santa Clara, CA
Columbus, NE	Amphenol, RF Operations	54294	
	Burlington, MA	Shalleross Inc.	55680
		Smithfield, NC	Nichicon/America/Corp.
51167	52525		Schaumburg. IIL
Aries Eloctronics Inc.	SpacoLakInc.	54453	
Frenchtown, NJ	Lerco Div. Burbank, CA	Sullins Electronic Corp. San Marcos, CA	55943
51284	Bubank.	San Marcos, ${ }^{\text {ca }}$	(Replacod Transcon Mfg-24618)
Mos Technology	52531	54473	Fort Smith, AZ
Nomistown, PA	Hitachi Magnetics	Matsushita Electric Corp.	
	Edmore, MO	(Panasonic)	56282
51249		Sccaucus, NJ	Utek Systems Inc.
Heyman Mfg. Co.	52745		Olathe, KS
Cleveland, OH	Timeo	54492	
	Los Angcles, CA	Cinch Clamp Co., Inc.	56289
51372		Sania Rosa, CA	Sprague Electric Co.
Verbatim Corp.	52763		Norh Adams, MA
Sunnyvale, CA	Stctuncr-Electronics Inc.	54583	
	Chatanooga, TN	TDK	56365
51398		Garden City, NY	Square D Co.
MUPAC Corp.	52769		Corporate Offices
Brockton, MA	Sprague-Goodman Electronics Inc.	54590	Palatine, IIL
	Garden City Park, NY	RCA Corp	
51406		Distribution \& Special Products	56375 .
Murata Erie, No. America Ine.	52771	Cherry Hill, NY	WESCORP
(Also see 72982)	Moniterm Corp.		Div. Dal Industries Inc
Maricua, GA	Amatrom Div.	54869	Mountain View, CA
	Sania Clara, CA	Piher Intemational Corp.	
		Arlington Heights, II.	

Federal Supply Codes for Manufacturers (cont)

56481	59610	60911	64537
Shugatt Associates	Souriau Inc	Inmos Corp.	KDI Electronics
Sub of Xerox Corp.	Valencia, CA	CO Springs, CO	Whippany, NJ
Sunnyvale, CA			
	59635	60935	64782
56637	HV Component Associates	Westlake Capacitor Ine.	Precision Control Mfg. Inc.
RCD Components Inc. Manchester, NH	Howell, NJ	Tantalum Div. Greencaste, N	Bellewue, WA
	59640		64834
56708	Superiex Inc.	60958	West M G Co.
Zilog Inc.	Sunnyvale, CA	AClC	San Francisco, CA
Campbell, CA		Intercomp Wire \& Cable Div.	
	59660	Hayesvilla, NC	
56856	Tusonix Inc.		64961
Vamistor Corp. of IN	Tueson, AZ	61271	Electronic Hardware LID
Sevierville, TN		Fujisu Microelectronics Inc	North Hollywood, CA
	59730	San Jose, CA	
	Thomas and Bens Corp.		65092
56880	IA City, IA	61394	Sangamo Weston Inc.
Magneics Inc.		SEEQ Technology Inc.	Weston Instrameris Div.
Balimore, MD	59831	San Jose, CA	Niewark, NJ
	Semtronics Corp.		
57026	Watchung. NJ	61429	65786
Endicour Coil Co. Inc.		Fox Electronics	Cypress Semi
Binghamton, NY	61053:	Cape Coral, FL	San Jose, CA
	American Components Inc. an Insilco Co. RPC Div.	61529	65940
Gates Energy Products	Hayesville, NiC	Aromat Corp.	Rohm Corp \& Whatney
Denver, CO		New Providence, NJ	Ivine, CA
	6611		
57170	Allen, Robert G. Inc.	61752	65964
Cambridge Themionic	Van Niuys, CA	IR-ONCS Inc	Evox Inc.
Cambridge MA		Warwick, RI	Bannockbumr, IIL
Replaced by:	6850		
71279	Burgess Switch Co., Inc	61772	66150
Interconnection Products Inc.	Northbrook, IL	Integrated Device Technology Santa Clara, CA	Entron Inc. Winslow Teltronics Div.
57668	6095		Glendale, NY
R-ohm Corp	AVD Enterprises, Inc.	61802	
Invine, CA	Roswell, GA	Toshiba	
		Houston, TX	66302
57962	6×403		VLSI Technology Inc.
SGS - Thomson Microeloctronies Inc	SGS/ATES Samiconductor Corp.	61857	San Jose, CA
Monigameryville, PA	Inpolis, IN	SAN-O Industrial Corp. Bohemia, Long Island, NY	66419
58014	$6 \mathrm{Y440}$		Exel
Hitachi Magnalock Corp.	Micron Technology Inc.	61935	San Jose, CA
(Now 12581)	Boise, ID	Schurter Inc. Pctaluma, CA	66450
58104	60046		Dyma-Tech Electronics, Inc
Simco	Power Dynamics Inc	62351	Walled Lake, MI
Aldanta, GA	West Orange, NJ	Apple Rubber Lancaster, NY	66608
58364	60197		Becing Industries
BYCAP Inc.	Precicontact Inc.	62643	Freemont, CA
Chicago, IL	Langhome, PA	United Chemicon	
	60386	Rosemont, IL	66891
Precision Lamp	Squires Electronies Inc	62712	Lawrence, MA
Cotat, CA	Comelius, OR	Seiko Instruments	66958 -
		Torrance, CA	66958
	60395		SGS Semiconductor Corp.
58474	XicorInc.	62793	Phoenix, AZ
Superior Electric Co. Bristol, CT	Milpitas, CA	Lear Sicgler Inc. Energy Products Div.	
	60399	Santa Ana, CA	66967
58614	Torin Engincered Blowers		Powerex Isc
Communications Instruments Inc.	Div. of Clevepak Corp.	63743	Aubum, NY
Fairview, NC	Toringion, CT	Ward Leonard Electric Co.Inc. Mount Vemon, NY	67183
59124	60496		Altera
KOA-Speer Eloctronics Inc.Bradford, PA	Micrel Inc.	64154	Santa Clara, CA
	Sumnyvale, CA	Lamb Industries	
		Portand, OR	68919
59422	60705		WLMA
Holmberg Electronics	Cerr-Mite Corp.	64155	Go Hamy Levinson Co.
lrvine, CA	(formeily Sprague)	Linear Technology	Seaule, WA
	Grafion, WI	Milpitas, CA	

Federal Supply Codes for Manufacturers (cont)

7F361	71468	73138	75042
Richmond-Division of Dixico	ITT Cannon Div. of ITT	Beckman Industrial corp.	TRW Inc.
\%o Zellerbach Papar Co.	Fountain Valley, CA	Helipor Div.	IRC Fixed Resistors
Seanle, WA		Fullerion, CA	Philadelphia, PA
	71482		
7F844	General Instrument Corp.	73168	75297
Moore Business Forms, Inc	Clare Div.	Fenwal Inc.	Kerer Solder Div.
Scatue, WA	Chicago, IL	Ashland, MA	Liton Systems, Inc Des Plaines, II
76902	71590	73293	
Textron Inc.	Mepeo/Centralab	Hughes Aircraft Co.	75376
CamearDiv.	A North American Philips Co.	Eloctron Dynamies Div.	Kurz-Kasch Inc.
Rockford, IL	For Dodge, IA	Torrance, CA	Dayton, OH
73395		73445	75378
Universal Plastics	71707	Amperex Electronic Corp.	CTS Knights Inc.
Welshpool, WA	Coto Corp. Providence, RI	Hicksville. NY	Sandwich, II
7 J 696		73559	75382
AMD Plastics	71744	Carlingswitch Inc.	Kulka Electric Corp.
East Lake, OH	General Instrument Corp. Lamp Div/Worldwide	Harford, CT	(Now 83330) Mount Vemon, NY
7K354	Chicago, II.	73586	
Omni Spectra Inc		Circle F Industries	75569
Los Alios, CA	71785	Trenton, NJ	Peformance Semiconductor Corp.
	TRW Inc.		Sumprale, CA
	Cinch Connector Div.	73734 Feral Screw Pradues Inc	
72884	Elk Grove Village, IL.	Federal Screw Products Inc.	75915
ALPS		Chicago, IL	Litulfuse Tracor
Seatue, WA	71984		(Formedy: Tracor-Littelfuse) Des Plaines, II
7X634	Dow Coming Corp. Midland, MI	73743 $F i s c h e r ~ S p e c i a l ~ M f g . ~ C o . ~$	Des Plaines, il
Duracell LiSA		Cold Spring, KY	76854
Div. of Dart \& Kraft Inc.	72005		Oak Switch Systems Inc.
Valdese, NC	AMAX Specialty Metals Corp. Newark, N	73893 Microdot	Crystal Lake. IIL
70290	-	ML. Clemens, MS	77122
Almetal Universal Joint Co.	72136		TRW Assemblies \& Fasteners Group
Cleveland, OH	Electro Motive Mfg. Corp. Florence NC	73899 JFD Electronic Components	Fastener Div. Moutainside, NJ
70485		Div. of Murata Erie	
Atlantic India Rubber Works Inc.	72228	Oceanside, NY	77342
Chicago. IL	AMCA Intemational Corp.		AMF Inc.
	Continental Screw Div.	73905	Pouer \& Bramfield Div.
70563	Niew Bedford, MA	FL Industries Inc.	Princeton, ${ }^{\text {N }}$
Amparite Company		San Jose, CA	
Union City, NJ	72259		77542
	Nytronics Inc.	73949 9,	Ray-O-Vac Corp
70903	New York, NY	Guardian Electric Mfg. Co.	Madison, WI
Cooper-Belden Corp.		Chicago. IL	
Geneva, IL			77638
	72619	74199	General Instnument Corp.
71002	Amperex Electronic Corp.	Quam Nichols Co.	Rectifer Div.
Bimbach Co. Inc.	Dialight Div.	Chicago, IL	Brooklym, NY
Farmingdale, NY	Brooklyn, NY		
		74217	77900
71034 Bliley Electric Co.	72653	Radio Switch Co.	Shakeproof Lock Washer Co.
Bliley Electric Co.	G C Electronics Co.	Marlboro, NJ	(Now 78189)
Eric, PA	Div. of Hydrometals Inc. Rociford, II		
	Rociford, IL	Piezo Crystal Co.	Rubbercraft Corp. of CA Lid.
71183	72794	Div. of PPA Industries Inc.	Torrance CA
Westinghouse Electric Corp.	Dzus Fastrer Co. Inc.	Carlisle, PA	
Bryant Div.	Wert Islip, NY		78189
Bridgepor, CT		74445	Il Tool Wodks Inc.
	72928	Holo-Krame Co.	Shakeproof Div.
71279	Gulton Industries Inc.	Emwood, CT	Elgin. Il
Iniercannection Producas Inc.	Gudeman Div.		
Santa Ana, CA	Chicago, IIL	74542	78277
		Hoyt Elect.Instr. Works Inc.	Sigma Instuments Inc.
	72962	Penacook, NH	South Braintree, MA
71400	Elastic Stop Nut		
Busman Manufacturing	Div. of Harrard Industrics	74840	78290
Div. McGraw-Edison Co. SL Louis, MO	Union, NJ	II. Capacitor Inc. Lincolnwood, II	Struthers Dunn Inc. Piman, NJ
SL Lowis, MO	72982		
71450	Erie Specialty Products, Inc	74970	78553
CTS Corp.	Formerly: Murata Erie	Johnson EF Co.	Eaton Corp.
Elkhast, LiN	Erie, PA	Wasoca, MN	Engincered Fastener Div. Cleveland, OH

Federal Supply Codes for Manufacturers (cont)

78592	81439	83315	87034
Stoeger Industrics	Therm-O-Dise Inc.	Hubbell Corp.	Illuminated Products Inc.
South Hackensack, NJ	Mansfield, OH	Mundelein, IL	Now 76854)
79497	81483	83330	87516
Western Rubber Co.	Intemational Rectifitr Corp.	Kulka Smith Inc.	Standard Crystal
Goshen, IN	Los Angeles, CA	A North American Philips Co. Manasquam, NJ	KS City, KS
79727	81590		88044
C - W Industries	Kary Eectronics Inc.	83478	Aerorautical Suandards Group
Southampron, PA	Scaule, WA	Rubbercrafi Corp. of America West Haven, CT	Dept. of Navy \& Air Force
79963	81741		88219
Zierick Mfg. Corp.	Chicago Lock Co.		GNB Inc.
Mount Kisco, NंY	Chicago, II	83553	Industrial Batury Div.
		Associated Spring Bames Group	Langhome, PA
8C798	82227	Gardena, CA	
Ken-Tronics, Inc.	Aispax Corp.		88245
Milan. IL	Cheshire Div.	83740	Winchester Electronics
	Cheshire, CT	Union Carbide Corp.	Liton Systems-Useco Div.
8D528		Bawery Producus Div.	Van Nuys, CA
Baumgartens	82240	Danbury, CT	
Atlanta, GA	Simmons Fasiner Corp.		88486
	Albany, NY	84171	Triangle PWC Inc.
8 F 330		Arco Electranics	Jewiu City, CT
Eaton Corp.	82305	Commack, NY	
Curler Hammer Product Sales Office	Palmer Electronics Corp.		
Mountain View, CA	South Gate, CA	84411	88690
		American Shizuki	Essex Group Inc.
8T100	82389	TRW Capacitors Div.	Wire Assembly Div.
Tellabs Inc.	Switcheraft Inc.	Ogallala, NE	Dearbom, MI
Naperville, IL	Sub of Raytheon Co.		
	Chicago, II	84613	88786
80009		FIC Corp.	Aulantic India Rubber Co.
Tekronix	82415	Rockville, MD	Goshers. IN
Beavertar, OR	Aippax Corp		88978
80031	Frederick, MD	Essex Group Inc.	Philips (Now Fluke)
Mepco/Electra Inc.		Peabody, MA	Mahwah, NJ
Moristown, NJ	82872		
	Roanwell Corp.		89020
80032	New York, NY	84830	Amerace Corp.
Ford Aerospace \&		Lee Spring Co. Inc	Buchanan Crimptool Products Div.
Communications Corp.	82877	Brooklym, NY	Union, NJ
Wetem Development	Raton Inc.		
Laboratories Div.	Cuscom Div.	85367	89265
Palo Alto, CA	Woodslock, MY	Bearing Distributing Co. San Fransisco, CA	Porer-Brumfield (See 77342)
80145	82879		
LFE Corp.	ITT	85372	89462
Process Control Div.	Royal Electric Div.	Bearing Sales Co.	Waldes Truare, Inc.
Clinton, OH	Pawtucker, RI	Los Angeles, CA	Long Island, NY
80183	83003	85480	
Sprague Products	Varolne	W. H. Brady Co.	89536
(Now 56289)	Gardand, TX	Industrial Product Milwaukee, WI	John Fluke Mfg. Co., Inc. Evereri, WA
80294	83014		
Boums Insruments Inc.	Harwell Corp.	85840	89597
Rivesside, CA	Placentia, CA	Brady WH Co Industrial Producas Div	Fredericks Co. Huntingdon Valley, PA
80583	83055	Milwaukee, WI	Huniggon Valley, RA
Hammerlund Mfg. Co. Inc.	Signalite Fuse Co.		89709
Paramus, NJ	(Now 71744)	85932	Bunker Ramo-Elura Corp.
		Electro Film Inc.	Amphenol Div.
80640	83058	Valcncia, CA	Broadview, Il
Computer Products Inc.	TRW Assemblies \& Fasteners Group		
Stevens-Amold Div.	Fasteners Div.		89730
South Boston, MA	Cambridge, MA	86577	Gerneral Electric
		Precision Metal Products Co.	Lamp Div.
81073	83259	Pcabody, MA	Newark, NJ
Grayhill Inc.	Parker-Hannifin Corp.		
La Grange, IIL	O-Seal Div.	86684	9R216
81312	Culver City, CA	Radio Corp. of America Now 54590)	Data Composition Sve, Inc Laurel, MD
Liuon Systems Inc.	83298		
Winchester Electronics Div.	Bendix Corp.	86928	$9 \mathrm{S171}$
Waterown CT	Electric \& Fluid Power Div. Eatonville NJ	Scastrom Mfg. Co. Inc.	Por Plastics Tukwila, WA

Federal Supply Codes for Manufacturers (cont)

9W423	91934	95573	98278
Amatom	Miller Electric Co.	Campion Laboratories Inc.	Malco A Microdot Co.
El Mont, CA	Woonsocket, RI	Detroit, MI	South Pasadena, CA
90201	91967	95712	98291
Mallory Capacitor Co.	Niational Tel-Tronics	Bendix Corp.	Sealectro Corp.
Sub of Emhart Industries Inc.	Div. of electro Audio Dynamics Inc	Electrical Comp. Div.	BICC Electanios
Indiamapolis, \mathbb{N}	Meadville, PA	Franklin, \mathbb{N}	Trumbill, CT
90215	91984	95987	98372
Best Stamp \& Mrg. Co.	Maida Development Co.	Weckesser Co. Inc.	Royal Industries Inc.
KS City, MO	Hampion, VA	(Now 85480)	(Now 62793)
90303 Duracell Inc. Technical Sales \& Markeing Bethel, CT	91985	96733	98388
	Norwalk Valve Co.	SFE Tochnologics	Lear Siegler inc.
	S. Norwalk, CT	San Femando, CA	Accurate Products Div. San Deigo, CA
	92218	96853	
91094 Essex Group Inc. Suflex/IWP Div. Newmarket, NH	Wakeficld Corp., The	Gulton Industries Inc.	98978
	Wakefield, ME	Measurement \& Controls Div.	IERC
		Manchester, NH	(Intemational Electronic Researct. Corp.)
	92527		Burbank, CA
	VIC inc.	96881	
91247 II. Transformer Co. Chicago, II	Bloamington, MN	Thomson Industries Inc.	99120
		Port WA, NY	Plastic Capacitors Inc.
	92607		Chicago, Il
91293 Johanson Mfg. Co. Boonton, NJ	Tensolite Co.	97464	
	Div. of Carlisle Corp.	Industrial Retainer Ring	99217
	Buchanaz, NY	Irvington, NJ	Bell Industries Inc. Elect Distributor Div.
	92914	97525	Sunnyvale, CA
Alpha Industries Inc. Logansport, IN	Alpha Wirc Corp.	EECO Inc.	Sunyvale, CA
	Elizabeth, NJ	Santa Ara, CA	99378
			ATLEE of DE Inc.
	93332	97540	N. Andover, MA
91502 Associated Machine Santa Clara, CA	Sylvania Electric Products	Whitchall Electronios Corp.	
	Semiconductor Produciš Div. Wobum, MA	Master Mobile Mounts Div. Fort Meyers, FL	99392
		Fort Meyers, FL	Mepco/electra Inc. Roxboro Div.
91506 Augat Alcoswitch N. Andover. MA	94144	97913	Roxboro, ic
	Raytheor Co.	Industrial Electronic	
	Microwave \& Power Tube Div.	Hardware Corp.	99515
	Quincy, MA	NY,NY	Electron Produces Inc.
			Div. of American Capacitors
91507 Froeliger Machine Tool Co. Stockton, CA	94222	97945	Duarte, CA
	Southeo Inc.	Pcrawalt Corp.	
	Concordville, PA	SS White Industrial Products	99779
		Piscataway, NJ	Bunker Ramo-Elura Corp.
91637 Dale Electronics Ine. Columbus, NE	94988		Bames Div.
	Wagner Electric Corp.	97966	Lansdown, PA
	Sub of Mcgraw-Edison Co.	CBS	
91662	Whippany, NJ	Electronic Div.	99800
		Danvers, MA	American Precision Industries
Elco Corp.	95146		Delevan Div.
A Gulf Western Mig. Co.	Alco Electronic Products Inc.	98094	East Aurora, NY
Connector Div.	Switch Div.	Machiell Laboratories Inc.	
Huntingdon, PA	North Andover, MA	Santa Barbara. CA	99942
91737	95263	98159	A North American Philips Co.
ITT Cannon/Gremar (Now 08718)	Leecraft Mfg. Co.	Rubber-Teck Inc.	Milwaukee, W!
91802 Industrial Devices Inc. Edgewater, NT			
	Vitramon Inc.		
	Bridgepor, CT		
$\begin{aligned} & 91833 \\ & \text { Keystone Elecronics Corp. } \\ & N Y, N Y \end{aligned}$	95303		
	RCA Corp.		
	Receiving Tube Div.		
91836 King's Electronies Co. Inc. Tuckahoc, NY	Cincinnati, Of		
	95348		
	Gordo's Corp. Blomfield $\mathbf{~ N J}$		-
91929 Honeywell Inc. Micro Switch Div. Freepor, IIL			
	95354		
	Meihode Mfg. Corp.		
	Rolling Meadows, IL		

USA	International		
California	Argentina	Chile	Franc
Fluke Service Center	Coasin S.A.	Intronica	Fluke France S.A.
46610 Landing Parkway	Virrey del Pino 4071	Instrumentacion Electronica,	37 Rue Voltaire
Fremont, CA 94538	1430 CAP FED	S.A.C.I.	BP 112
TEL: (510) 651-5112	Buenos Aires	Guardia Vieja 181 Of. 503	93700 Drancy,
FAX: (510) 651-4962	TEL: 54-1-552-5248	Casilla 16500	TEL: 33-1-48-966361
	FAX: 54-1-11-1427	Santiago 9Chile	
Fluke Service Center			
16715 Von Karman Avenue	Viditec S.A	TEL: 56-2-232-3888	Germany
Suite 110	Lacarra 234	FAX: 56-2-231-6700	Fluke Deutschland Gmbh
Invine, CA 92714	Buenos Aires CP 1407		Service \& Calibration Lab.
TEL: (714) 863-9031	TEL: 54-1-636-1199	China	Oskar-Messter-Strasse 18
FAX: (714) 757-7556	FAX: 54-1-636-2185	Fluke Service Center	85737 Ismaning/Munich
		Room 2111 Scite Tower	TEL: 49-89-99611-260
FloridaFluke Service Center	Australia	Jianguomenwai Dajie	FAX: 49-89-99611-270
	Phillips Customer Support		
550 S. North Lake Blvd.	Scientific and Industrial	TEL: 86-1-512-3435 or 6351	Fluke Deutschland
Altamonte Springs, FL 32701-	23 Lakeside Drive	FAX: 86-1-512-3437	Test \& Measurement
5227	Tally Ho Technology Park		Meiendorferstrasse 205
TEL: (407) 331-2929	East Burwood	Colombia	22145 Hamburg 73
FAX: (407) 331-3366 or 331-	Victoria 3151	Sistemas E Instrumentacion,	TEL: 49-40-6797-434
7710	FAX: 61-3-881-3636	Ltda. Carrera 21, NO. 39A-21, OF	FAX: 49-40-6797-421
Illinois			Hong Kong
Fluke Service Center	Phillips Customer Support	Ap. Aereo 29583	Schmidt \& Co (H.K.) Lid.
1150 W. Euclid Avenue	Scientific and Industrial	Bogota	1st Floor
Palatine, IL 60067	Block F, Centrecourt	TEL: 57-1-287-5424	323 Jafte Road
TEL: (708) 705-0500	34 Waterloo Road	FAX: 57-1-287-248	TEL: 852-9223-5623
FAX: (708) 705-9989	North Ryde, N.S.W. 2113 TEL: 61-2-888-0416		FAX: 852 834-1848
		Costa Rica	
New Jersey Fluke Service Center W. 75 Century Rd or P.O. Box 930 Paramus, N.J. 07652 TEL: (201) 599-9500 (599-0919) FAX: (201) 599-2093	FAX: 61-2-888-0440	Electronic Engineering, S.A. Carretera de Circunvalacion	Ireland, Republic of
			Fluke U.K. LTD.
	Austria	Sabanilla Av. Novena	Customer Support
	Fluke Vertriebsges. m.b.H.	P.O. Box 4300-1000	Colonial Way
	SudrandstraBe 7	San Jose	Watiord
	P.O. Box 10	TEL: 506-253-3759	Hertiordshire WD2 4TT U.K.
	A-1232 Vienna	FAX: 506-225-1286	TEL: 44-923-240511
	TEL: 43-1-614-100		FAX: 44-923-225067
Texas ${ }^{\text {Fluke Service Center }}$	FAX: 43-1-61410-10	Danmark	
Fluke Service Center		Fluke Danmark A/S	India
2104 Hutton Drive	Belgium	T\&M Customer Support	Hinditron Services Pvt. Inc.
Suite 112	N.V. Fluke Belgium/S.A.	Ejby Industrivej 40	$33 / 44$ Rajmahal Vilas Extension
Carrollton, TX 75006	T\&M Customer Support	DK 2600 Glostrup	8 th Main Rd.
TEL: (214) 406-1000	Langeveldpark - Unit 5 \& 7	TEL: 45-43-44-1900	Bangalore 560080
FAX: (214) 406-1072	P.Basteleusstraat 2-4-6	FAX: 45-43-43-9192	TEL: 91-80-334-8266
	1600 St. Pieters - Leeuw		FAX: 91-80-3345022
Washington Fluke Service Center Fluke Corporation Building \#4 1420-75TH St. S.W. M/S 6-30 Everett WA 98203 TEL: (206) 356-5560 FAX: (206) 356-6390	TEL: 218-2-331-2777	Ecuador	
	FAX: 32-2-331-1489	Proteco Coasin Cia., Ltda.	Hinditron Services Pvt. Ltd
		Av. 12 de Octubre 2449 y	1st Floor, 17-B,
	Bolivia	Orellana	Mahal Industrial Estate
	Coasin Bolivia S.R.L.	P.O. Box 17-03-228-A	Mahakali Road, Andheri East
	Casilla 7295	Quito	Bombay 400093
	La Paz, Bolivia	TEL: 593-2-230283 or 520005	TEL: 91-22-837-0013
	TEL: $5911-2-340962$ FAX $591-2-359268$	FAX: 593-2-561980	FAX: 91-22-837-0087
	FAX: 591-2-359268		
	Canada Fluke Electronics Canada Inc. 400 Britannia Road East, Unit \#1 Mississauga, Ontario L4Z 1X9 TEL: 905-890-7600 FAX: 905-890-6866	Fiji Communications Pacific, Ltd.	Hinditron Services Pvt. Ltd Castle House, 5th Floor
		37 Freeston Road	5/1 A, Hungerford Street
		Walu Bay	Calcutta 700017
		G.P.O. Box 858	
			Hinditron Services Pvt. Lid
		TEL: 679312744 FAX: 679300379	15 Harrington Road ${ }^{15}$ Haret
			Madras 600031
		Finland	
		$\begin{aligned} & \text { Fluke Finland Oy } \\ & \text { Sinikalliontie } 3 \end{aligned}$	
		SF-02631 Espoo	
		TEL: 358-0-5026-6247	
		FAX: 358-0-5026-414	

Service Centers (cont)

Hindtron Services Pvt. Lid.	Malaysia	Peru	Taiwan
204-206 Hemkunt Tower	CNN. SDN. BHD.	Importaciones \&	Schmidt Electronics Corp.
98 Nehru Place	17D, 2nd Floor	Representaciones	5th Floor, Cathay Min Sheng
New Delhi 110019	Lebuhraya Batu Lancang	Electronicas S.A.	Commercial Building,
TEL: 91-11-641-0380	Taman Seri Damai	JR. Pumacahua 955	No. 178 Sec .2
FAX: 91-11-642-9118	11600 Jelutong Penang	Lima 11	Min Sheng East Road
	TEL: 60-4-657-9584	TEL: 51-14-23-5099	Taipei
Hinditron Services Pvt. Ltd.	FAX: 60-4-657-0835	FAX: 51-14-31-0707	TEL: 886-2-501-3468
Field Service Center			FAX: 886-2-502-9692
Emerald House	Mexico	Philippines	
5th Floor	Mexel Mexicana De Electronica	Spark Electronics Corp.	Thailand
114 Sarojini Devi Road	Industrial, S.A. De C.V.	P.O. Box 6.10, Greenhills	Measuretronix Ltd.
Secunderabad 500003	Diagonal No. 27	Metro Manila 1502	2102/31 Ramkamhang Road
TEL: 91 842-844033	Entra Calle de Eugenia Y Ave.	TEL: 63-2-700-621	Bangkok 10240
	Col. Del Valle	FAX: 63-2-721-0491	TEL: 66-2-375-2733, 375-2734
Indonesia	C.P. 03100, Mexico D.F.		FAX: 66-2-374-9965
P. T. Daeng Brothers	TEL: 52-5-682-8040	Portugal	
Phillips House	FAX: 52-5-687-8695	Fluke Iberica, S.L.	United Kingdom
J/n H.R. Rasuna Said Kav. 3-4		IE Division - T\&M Department	Fluke U.K. LTD.
Jakarta 12950	Mexicana De Electronica	(Delegacao em Portugal)	Customer Support
TEL: 62-21-520-1122	Industrial, S.A.	Campo Grande, 35-70B	Colonial Way
FAX: 62-21-520-5189	F-14 Bassett Center \#541	1700 Lisboa	Watford
	6001 Gateway West	TEL: 351-1-795-1712	Hertfordshire WD2 4TT
R.D.T Equipment and Systems,	EIPaso, TX 79925	FAX: 351-1-795-1713	TEL: 44-923-240511
Ltd.	TEL: 52-16-23-02-35		FAX: 44-923-225067
P.O. Box 58072	FAX: 52-16-23-02-35	Singapore	
Tel Aviv 61580		Fluke Corporation	Uruguay
TEL: 972-3-645-0745	Netherlands	Singapore Representative Office	Coasin Uruguaya S.A.
FAX: 972-3-647-8908	Fluke Europe B.V.	\#27-03 PSA Building	Casilla de Correo 1400
	Test \& Measurement	460 Alexandra Road	Libertad 2529
Italy	Science Park	Singapore 0511	Montevideo
Fluke Italia S.R.L.	Eindhoven 5110	TEL: 65-276-5161	TEL: 598-2-789-015
T\&M Customer Support	P.O. Box 1337	FAX: 65-276-5759	FAX: 598-2-492-199
Viale Delle Industrie, II	5602 BH Eindhoven		
20090 Vimodrone (MI)	TEL: 31-40-644-226	South Africa	Venezuela
TEL: 39-2-268434-435	FAX: 31-40-644-260	Spescom Measuregraph (PTY)	Coasin C.A.
FAX: 39-2-250-1645		Ltd.	Calle 9 Con Calle 4, Edif.
	Fluke Netherland B.V.	Spescom Park	Edinurbi
Japan	Technische Service Prof. Act.	Crn. Alexandra Rd. \& Second St.	Apartado de Correos NR-70.136
Fluke Corporation	Hurksestraat, 2C	Haltway House, Midrand 1695	Los Ruices
Sumitomo Higashi Shinbashi	Gebouw HBR	TEL: 27-11-315-0757	Caracas 1070-A
Bldg.	5652 AJ Eindhoven	FAX: 27-11-805-1192	TEL: 58-2-241-0309, 241-1248
1-1-11 Hamamatsucho	TEL: 31-40-722-626		FAX: 58-2-241-1939
Minato-ku	FAX: 31-40-723-337	Spain	
Tokyo 105		Fluke Iberica S.L.	Vietnam
TEL: 81-3-3434-0188	New Zealand	Centro Empresarial Euronora	Schmidt-Vietnam Co., Ltd.
FAX: 81-3-3434-0170	Phillips Customer Support	c/Ronda de Poniente, 8	6/FI.Fedalogical College Bldg.
	Scientific \& Industrial	28760-Tres Cantos	Dich Vong, KM 8 Highway 32
Korea	Private Bag 41904	Madrid, Spain	Tu Liem - Hanoi
B\&P International Co., Ltd.	St. Lukes, 2 Wagener Place	TEL: 34-1-804-2301	TEL: 84-4-346186
Geopung Tocon A-1809	Mt. Albert, Auckland 3	FAX: 34-1-804-2496	FAX: 84-4-346188
203-1 Nonhyun-Dong	TEL: 64-9-894-4160		
Kangnam-Ku	FAX: 64-9-849-7814	Sweden	
Seoul 135-010		Fluke Sverige AB	
TEL: 8202 546-1457	Norway	T\&M Customer Support	
FAX: 8202 546-1458	Fluke Norway A/S	Kronborgsgrand 11	
	Customer Support	P.O. Box 61	
IL MYOUNG, INC.	P.O. Box 6054 Etterstad	S-164 94	
780-46, Yeogsam-Dong	N-0601 Oslo	TEL: 46-8-751-0235	
Youngdong P.O. Box 1486	TEL: 47-22-653400	FAX: 46-8-751-0480	
Kangnam-Ku	FAX: 47-22-653407		
Seoul		Switzerland	
TEL: 822 552-8582-4	Pakistan (Philips)	Fluke Switzerland AG	
FAX: 822 553-0388	Philips Electrical Industries of	T\&M Customer Support	
	Pakistan, Ltd.	Rutistrasse 28	
	Islamic Chamber of Commerce	8952 Schlieven	
	Industry and Commodity	Switzerland	
	Exchange Bldg.	TEL: 41-1-730-3310	
	St-2/A, Block 9, KDA Scheme 5,	FAX: 41-1-730-3932	
	Clifton, Karachi-75600 Pakistan		

Section 8

Schematic Diagrams

TABLE OF CONTENTS

FIGURE NO.

PAGE

8-1.	752A Reference Divider Interconnect	8-3
8-2.	Bridge \& Compen PCB	8-4
8-3.	Output \& 10:1, 100:1	8-6

[^0]: PORTIONS REPRINTED
 WITH PERMISSION FROM TEKTRONIX INC. AND GENERAL DYNAMICS, POMONA DIV.

